Growth Factor Roles in Soft Tissue Physiology and Pathophysiology

  • Chapter
  • First Online:
Progress in Heritable Soft Connective Tissue Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1348))

Abstract

Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALK:

Activin receptor-like kinase

BMP:

Bone morphogenetic protein

BMPR:

Bone morphogenetic protein receptor

DPP:

Decapentaplegic

FGF:

Fibroblast growth factors

FSH:

Follicle stimulating hormone

GDF:

Growth differentiation factor

GH:

Growth hormone

IGF-I:

Insulin-like growth factor I

PDGF:

Platelet-derived growth factor

PRP:

Platelet-rich plasma

TGFβ:

Transforming growth factor β

VEGF:

Vascular endothelial growth factor

References

  • Abate M, Di Gregorio P, Schiavone C, Salini V, Tosi U, Muttini A (2012) Platelet rich plasma in tendinopathies: how to explain the failure. Int J Immunopathol Pharmacol 25:325–334

    Article  CAS  PubMed  Google Scholar 

  • Abate M, Guelfi M, Pantalone A, Vanni D, Schiavone C, Andia I et al (2016) Therapeutic use of hormones on tendinopathies: a narrative review. Muscles Ligaments Tendons J 6:445–452

    Article  PubMed  Google Scholar 

  • Achari Y, Chin JW, Heard BJ, Rattner JB, Shrive NG, Frank CB et al (2011) Molecular events surrounding collagen fibril assembly in the early healing rabbit medial collateral ligament--failure to recapitulate normal ligament development. Conn Tissue Res. 52:301–312

    Article  CAS  Google Scholar 

  • Ahtiainen JP, Hulmi JJ, Lehti M, Kraemer WJ, Nyman K, Selänne H et al (2016) Effects of resistance training on expression of IGF-I splice variants in younger and older men. Eur J Sport Sci 16:1055–1063

    Article  PubMed  Google Scholar 

  • Ammar MM, Waly GH, Saniour SH, Moussa TA (2018) Growth factor release and enhanced encapsulated periodontal stem cells viability by freeze-dried platelet concentrate loaded thermo-sensitive hydrogel for periodontal regeneration. Saudi Dent J 30:355–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson T, Eliasson P, Apenberg P (2012) Growth hormone does not stimulate early healing in rat tendons. Int J Sports Med 33:240–243

    Article  CAS  PubMed  Google Scholar 

  • Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspenberg P (2007) Stimulation of tendon repair: mechanical loading. GDFs and platelets Int Orthop 31:783–789

    Article  PubMed  Google Scholar 

  • Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70:51–54

    Article  CAS  PubMed  Google Scholar 

  • Aspenberg P, Virchenko O (2004) Platelet concentrate injection improves Achilles tendon repair in rats. Acta Orthop Scand 75:93–99

    Article  PubMed  Google Scholar 

  • Attia M, Huet E, Gossard C, Menashi S, Tassoni MC, Martelly I (2013) Early events of overused supraspinatus tendons involve matrix metalloproteinases and EMMPRIN/CD147 in the absence of inflammation. Am J Sports Med 41(4):908–917

    Article  PubMed  Google Scholar 

  • Azuma C, Tohyama H, Nakamura H, Kanaya F, Yasuda K (2007) Antibody neutralization of TGF-β enhances the deterioration of collagen fascicles in a tissue-cultured tendon matrix with ex vivo fibroblast infiltration. J Biomech 40:2184–2190

    Article  PubMed  Google Scholar 

  • Bachl N, Derman W, Engebretsen L, Goldspink G, Kinzlbauer M, Tschan H, Volpi P, Venter D, Wessner B (2009) Therapeutic use of growth factors in the musculoskeletal system in sports-related injuries. J Sports Med Phys Fitness 49:346–357

    CAS  PubMed  Google Scholar 

  • Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T (1995) PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Batten ML, Hansen JC, Dahners LE (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res 14:736–741

    Article  CAS  PubMed  Google Scholar 

  • Bava ED, Barber FA (2011) Platelet-rich plasma products in sports medicine. Phys Sportsmed 39:94–95

    Article  PubMed  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178

    Article  CAS  PubMed  Google Scholar 

  • Bolt P, Clerk AN, Luu HH, Kang Q, Kummer JL, Deng ZL, Olson K, Primus F, Montag AG, He TV, Haydon RC, Toolan BC (2007) BMP-14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury. J Bone Joint Surg Am 89:1315–1320

    Article  PubMed  Google Scholar 

  • Borjesson DL, Peroni JF (2011) The regenerative medicine laboratory: facilitating stem cell therapy for equine disease. Clin Lab Med 31:109–123

    Article  PubMed  Google Scholar 

  • Bosman EA, Lawson KA, Debruyn J, Beek L, Francis A, Schoonjans L et al (2006) Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels. Development 133:3399–3409

    Article  CAS  PubMed  Google Scholar 

  • Böttcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26:63–77

    Article  PubMed  CAS  Google Scholar 

  • Brown CA, Halper J (1990) Mitogenic effects of transforming growth factor type e on epithelial and fibroblastic cells--comparison with other growth factors. Exp Cell Res 190:233–242

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Pardali E, Sánchez-Duffhues G, ten Dijke P (2012) BMP signaling in vascular diseases. FEBS Lett 586:1993–2002

    Article  CAS  PubMed  Google Scholar 

  • Caniglia CJ, Schramme MC, Smith RK (2012) The effect of intralesional injection of bone marrow derived mesenchymal stem cells and bone marrow supernatant on collagen fibril size in a surgical model of equine superficial digital flexor tendonitis. Equine Vet J 44:587–593

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, Lineaweaver WC (1997) Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg 100:937–944

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC (2000) Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg 105:148–155

    Article  CAS  PubMed  Google Scholar 

  • Cheatham B, Kahn CR (1995) Insulin action and the insulin signalling network. Endocr Rev 16:117–142

    CAS  PubMed  Google Scholar 

  • Chellini F, Tani A, Zecchi-Orlandini S, Sassoli C (2019) Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. Int J Mol Sci 20(3):683

    Article  CAS  PubMed Central  Google Scholar 

  • Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008a) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36:461–472

    Article  PubMed  Google Scholar 

  • Chen CH, Cao Y, Wu YF, Bais AJ, Gao JS, Tang JB (2008b) Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg Am 33:1834–1842

    Article  PubMed  Google Scholar 

  • Chen JW, Niu X, King MJ, Noedl MT, Tabin CJ, Galloway JL (2020) The mevalonate pathway is a crucial regulator of tendon cell specification. Development 147:dev185389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetty A, Cao GJ, Nielsen HC (2006) Insulin-like growth factor signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 60:389–394

    Article  CAS  PubMed  Google Scholar 

  • Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: sox genes and BMP signaling. Dev Biol 257:292–301

    Article  CAS  PubMed  Google Scholar 

  • Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of TGF-β targeted cancer therapy. Int J Bio Sci 8:964–978

    Article  CAS  Google Scholar 

  • Corps AN, Jones GC, Harrall RL, Curry VA, Hazleman BL, Riley GP (2008) The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol 27:393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutu DL, Galipeau J (2011) Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging 3:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgren LA, va der Meulen MC, Bertram JE, Starrak GS, Nixon AJ (2002) Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res 20:909–910

    Article  Google Scholar 

  • Dahlgren LA, Mohammed HO, Nixon AJ (2005) Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res 23:84–92

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren LA, Mohammed HO, Nixon AJ (2006) Expression of insulin-like growth factor binding proteins in healing tendon lesions. J Orthop Res 24:183–192

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Wu F, Yeung EW, Li Y (2010) IGF-IEc expression, regulation and biological function in different tissues. Growth Hormon IGF Res 20:275–281

    Article  CAS  Google Scholar 

  • de Mos MvdW AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, van Osch GJ (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36:1171–1178

    Article  Google Scholar 

  • Del Buono A, Papalia R, Denaro V, Maccauro G, Maffulli N (2011) Platelet rich plasma and tendinopathy: state of the art. Int J Immunopathol Pharmacol 24:79–83

    Article  PubMed  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Dines JC, Weber L, Razzano P, Prajapati R, Timmer M, Bowman S, Bonasser L, Dines DM, Grande DP (2007) The effect of growth differentiation factor-5 coated sutures on tendon repair in a rat model. J Shoulder Elb Surg 16:S215–8S25

    Article  Google Scholar 

  • Dronkers E, Wauters MMM, Goumans MJ, Smits AM (2020) Epicardial TGFβ and BMP signaling in cardiac regeneration: what lesson can we learn from the develo** heart? Biomol Ther 10:404

    CAS  Google Scholar 

  • D'Souza D, Patel K (1999) Involvement of long- and short-range signaling during early tendon development. Anat Embryol (Berl) 200:367–375

    Article  CAS  Google Scholar 

  • Dudakovic A, Samsonraj RM, Paradise CR, Galeano-Garces C, Mol MO, Galeano-Garces D et al (2020) Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem 295:7877–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durgam SS, Stewart AA, Pondenis HC, Yates AC, Evans RB, Stewart MC (2012a) Responses of equine tendon- and bone marrow–derived cells to monolayer expansion with fibroblast growth factor-2 and sequential culture with pulverized tendon and insulinlike growth factor-I. Am J Vet Res 73:162–170

    Article  CAS  PubMed  Google Scholar 

  • Durgam SS, Stewart AA, Pondenis HC, Gutierrez-Nibeyro SM, Evans RB, Stewart MC (2012b) Comparison of equine tendon- and bone marrow–derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation. Am J Vet Res 73:153–161

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA, Pi X, Patterson C (2014) The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 25:472–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnebo S, Farnebo L, Kim M, Woon C, Pham H, Chang J (2017) Optimized repopulation of tendon hydrogel: synergistic effects of growth factor combinations and adipose-derived stem cells. Hand (NY) 12:68–77

    Article  Google Scholar 

  • Fenwick SA, Hazleman BL, Riley GP (2002) The vasculature and its role in the damaged and healing tendon. Arthritis Res 4:252–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleischhacker V, Klatte-Schulz F, Minkwitz S, Schmock A, Rummler M, Seliger A et al (2020) In vivo and in vitro mechanical loading of mouse Achilles tendons and tenocytes-a pilot study. Int J Mol Sci 21:1313

    Article  CAS  PubMed Central  Google Scholar 

  • Forslund C, Aspenberg P (2002) CDMP-2 induces bone or tendon-like tissue depending on mechanical stimulation. J Orthop Res 20:1170–1174

    Article  CAS  PubMed  Google Scholar 

  • Forslund C, Rueger D, Aspenberg P (2003) A comparative dose-response study of cartilage-derived morphogenetic protein (CDMP)-1, −2 and −3 for tendon healing in rats. J Orthop Res 21:617–621

    Article  CAS  PubMed  Google Scholar 

  • Frank C, McDonla D, Shrive N (1997) Collagen fibril diameters in the rabbit medial collateral ligament scar. Conn Tissue Res 36:261–269

    Article  CAS  Google Scholar 

  • Genovese RL (1993) Prognosis of superficial digital flexor tendon and suspensory ligament injuries. Proc Am Assoc Equine Pract:17–19

    Google Scholar 

  • Ghahary A, Tredget EE, Shen Q, Kilani RT, Scott PG, Houle Y (2000) Mannose-6-phosphate/IGF-II receptors mediate the effects of IGF-I induced latent transforming growth factor beta 1 on expression of type I collagen and collagenase in dermal fibroblasts. Growth Factors 17:167–176

    Article  CAS  PubMed  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW (2011) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 44:25–32

    Article  PubMed  Google Scholar 

  • Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265

    CAS  PubMed  Google Scholar 

  • Graham JG, Wang ML, Rivlin M, Beredkjiklian PK (2019) Biologic and mechanical aspects of tendon fibrosis after injury and repair. Conn Tissue Res 60:10–20

    Article  Google Scholar 

  • Greenough CG (1996) The effect of pulsed electromagnetic fields on flexor tendon healing in the rabbit. J Hand Surg 21:808–812

    Article  CAS  Google Scholar 

  • Guenther C, Pantalena-Filho L, Kingsley DM (2008) Sha** skeletal growth by modular regulatory elements in the Bmp5 gene. PLoS Genet 4:e1000308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Wu G (2012) The signaling and functions of heterodimeric bone morphogenetic proteins. Cytokine Growth Factor Rev 23:61–67

    Article  CAS  PubMed  Google Scholar 

  • Hagerty P, Lee A, Calve S, Lee CA, Vidal M, Baar K (2012) The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 33:6355–6361

    Article  CAS  PubMed  Google Scholar 

  • Halper J (2010) Growth factors as active participants in carcinogenesis: a perspective. Vet Pathol 47:77–97

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Boesen A, Holm L, Flyvbjerg A, Landberg H, Kjaer M (2013) Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Sports Med 23:614–618

    CAS  Google Scholar 

  • Hansson HA, Dahlin LB, Lundborg G, Löwenadler B, Paleus S, Skottner A (1988a) Transiently increased insulin-like growth factor I immunoreactivity in tendons after vibration trauma: an immunohistochemical study on rats. Scand J Plast Reconstr Surg Hand Surg 22:1–6

    CAS  PubMed  Google Scholar 

  • Hansson HA, Engström AM, Holm S, Rosenqvist AL (1988b) Somatomedin C immunoreactivity in the Achilles tendon varies in a dynamic manner with the mechanical load. Acta Physiol Scand 134:199–208

    Article  CAS  PubMed  Google Scholar 

  • Harvey T, Flamenco S, Fan CM (2019) A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat Cell Biol 21:1490–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haubruck P, Tanner MC, Vlachopoulos W, Hagelskamp S, Miska M, Ober J et al (2018) Comparison of the clinical effectiveness of bone Morphogenic protein (BMP) -2 and −7 in the adjunct treatment of lower limb nonunions. Orthop Traumatol Surg Res 104:1241–1248

    Article  PubMed  Google Scholar 

  • Haupt JL, Donnelly BP, Nixon AJ (2006) Effects of platelet-derived growth factor-BB on the metabolic function and morphologic features of equine tendon in explant culture. Am J Vet Res 67:1595–1600

    Article  CAS  PubMed  Google Scholar 

  • Hayler CI, Guffre BM (2009) Overuse of isolated and multiple ligament injuries of the elbow. Magn Reson Imaging Clinic N Am 17:617–638

    Article  Google Scholar 

  • Hazard SW, Myers RL, Ehrlich HP (2011) Demonstrating collagen tendon fibril segments involvement in intrinsic tendon repair. Exp Mol Pathol 91:660–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Gan AW, Lim AY, Goh JC, Hui JH, Lee EH et al (2013) The effect of fibrin glue on tendon healing and adhesion formation in a rabbit model of flexor tendon injury and repair. J Plast Surg Hand Surg 47:509–512

    PubMed  Google Scholar 

  • Hearn MT, Gomme PT (2000) Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. the glycoprotein hormones. J Mol Recognit 13:223–278

    Article  CAS  PubMed  Google Scholar 

  • Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581

    Article  CAS  PubMed  Google Scholar 

  • Heinemeier KM, Olesen JL, Haddad F, Schjerling P, Baldwin KM, Kjaer M (2009) Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J Appl Physiol 106:178–186

    Article  CAS  PubMed  Google Scholar 

  • Heinemeier KM, Mackey AL, Doessing S, Hansen M, Bayer ML, Nielsen RH, Herchenhan A, Malmgaard-Clausen NM, Kjaer M (2012) GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scand J Med Sci Sports 22:1–7

    Article  Google Scholar 

  • Heisterbach PE, Todorov A, Flückiger R, Evans CH, Majewski M (2011) Effect of BMP-12, TGF-β1 and autologous conditioned serum on growth factor expression in Achilles tendon healing. Knee Surg Sports Traumatol Arthrosc 20:1907–1914

    Article  PubMed  Google Scholar 

  • Helm GA, Li JZ, Alden TD, Hudson SB, Beres EJ, Cunningham M, Mikkelsen MM, Pittman DD, Kerns KM, Kallmes DF (2001) A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein–13 adenoviral gene therapy. J Neurosurg 95:298–307

    Article  CAS  PubMed  Google Scholar 

  • Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH et al (2020) IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J 34:5363–5388

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand KA, Woo SL, Smith DW, Allen CR, Deie M, Taylor BJ, Schmidt CC (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 26:549–554

    Article  CAS  PubMed  Google Scholar 

  • Hinck AP (2012) Structural studies of the TGF-bs and their receptors – insights into evolution of the TGF-b superfamily. FEBS Lett 586:1860–1870

    Article  CAS  PubMed  Google Scholar 

  • Hofer T, Desbaillets I, Höpfl G, Gassmann M, Wenger RH (2001) Dissecting hypoxia-dependent and hypoxia-independent steps in the HIF-1alpha activation cascade: implications for HIF-1alpha gene therapy. FASEB J 15:2715–2717

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, Gross G, Gazit D (2006) Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 116:940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Mao ZB, Wei XL, Lin L, Chen LX, Wang HJ, Fu X, Zhang JY, Yu C (2009) Effects of transforming growth factor-β1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol 28:324–335

    Article  CAS  PubMed  Google Scholar 

  • Hui Q, ** Z, Li X, Liu C, Wang X (2018) FGF family: from drug development to clinical application. Int J Mol Sci 19:1875

    Article  PubMed Central  CAS  Google Scholar 

  • Ide J, Kikukawa K, Hirose J, Iyama KI, Sakamoto H, Eng DR, Fujimoto T, Mizuta H (2009) The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elb Surg 18:391–398

    Article  Google Scholar 

  • Ingraham JM, Hauck RM, Ehrlich HP (2003) Is the tendon embryogenesis process resurrected during tendon healing? Plast Reconstr Surg 112:844–854

    Article  PubMed  Google Scholar 

  • Janssen JAMJL (2020) New insights from IGF-IR stimulating activity analyses: pathological ConsiderationsNew insights from IGF-IR stimulating activity analyses: pathological considerations. Cell 9:864

    CAS  Google Scholar 

  • Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z et al (2014) The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 1:149–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  • Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, Hazleman BL, Riley GP (2006a) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human Achilles tendon. Arthritis Rheumatol 54:832–842

    Article  CAS  Google Scholar 

  • Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, Hazleman BL, Riley GP (2006b) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human Achilles tendon. Arthritis Rheumatol 54:832–842

    Article  CAS  Google Scholar 

  • Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL (2007) Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 13:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Juul A (2003) Serum levels of insulin-like growth factor I and its binding protein in health and disease. Growth Hormon IGF Res 13:113–120

    Article  CAS  Google Scholar 

  • Kaux JF, Drion PV, Colige A, Pascon F, Libertiaux V, Hoffmann A, Janssen L, Heyers A, Nusgens BV, Le Goff C, Gothot A, Cescotto S, Defraigne JO, Rickert M, Crielaard JM (2012) Effects of platelet-rich plasma (PRP) on the healing of Achilles tendons of rats. Wound Repair Regen 20:748–756

    Article  PubMed  Google Scholar 

  • Kelley KM, Schmidt KE, Berg L, Sak K, Galima MM, Gillespie C, Balogh L, Hawayek A, Reyes JA, Jamison M (2002) Comparative endocrinology of the insulin-like growth factor-binding protein. J Endocrinol 175:3–18

    Article  CAS  PubMed  Google Scholar 

  • Ker ED, Chu B, Phillippi JA, Gharaibeh B, Huard J, Weiss LE, Campbell PG (2011) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32:3413–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27:393–408

    Article  CAS  PubMed  Google Scholar 

  • Kieny M, Chevallier A (1979) Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol 49:153–165

    CAS  PubMed  Google Scholar 

  • Kim HJ, Nam HW, Hur CY, Park M, Yang HS, Kim BS, Park JH (2011) The effect of platelet rich plasma from bone marrow aspirate with added bone morphogenetic protein-2 on the Achilles tendon-bone junction in rabbits. Clin Orthop Surg 3:325–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim WS, Park HS, Sung JH (2015) The pivotal role of PDGF and its receptor isoforms in adipose-derived stem cells. Histol Histopathol 30:793–799

    CAS  PubMed  Google Scholar 

  • Kim SE, Kim JG, Park K (2019) Biomaterials for the treatment of tendon injury. Tissue Eng Regen Med 16:467–477

    Article  PubMed  PubMed Central  Google Scholar 

  • King JA, Storm EE, Marker PC, Dileone RJ, Kingsley DM (1996) The role of BMPs and GDFs in development of region-specific skeletal structures. Ann N Y Acad Sci 785:70–79

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DM (1994) The TGFβ superfamily: new members, new receptors, and new genetic tests of function on different organisms. Genes Dev 8:133–146

    Article  CAS  PubMed  Google Scholar 

  • Klatte-Schulz F, Pauly S, Scheibel M, Greiner S, Gerhardt C, Schmidmaier G, Wildemann B (2012) Influence of age on the cell biological characteristics and the stimulation potential of male human tenocyte-like cells. Eur Cell Mater 24:74–89

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Saita Y, Takaku T, Yokomizo T, Nishio H, Ikeda H et al (2020) Platelet-rich plasma (PRP) accelerates murine patellar tendon healing through enhancement of angiogenesis and collagen synthesis. J Exp Orthop 7(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokubu S, Inaki R, Koshi K, Hikita A (2020) Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen Ther 14:103–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kol AW, Walker NJ, Galuppo LD, Clark KC, Buerchler S, Bernanke A, Borjesson DL (2013) Autologous point-of-care cellular therapies variably induce equine mesenchymal stem cell migration, proliferation and cytokine expression. Equine Vet J 45:193–198

    Article  CAS  PubMed  Google Scholar 

  • Kosaka N, Sakamoto H, Terada M, Ochiya T (2009) Pleiotropic function of FGF-4: its role in development and stem cells. Dev Dyn 238:265–276

    Article  CAS  PubMed  Google Scholar 

  • Kou I, Ikegawa S (2004) SOX9-dependent and -independent transcriptional regulation of human cartilage link protein. J Biol Chem 279:50942–50948

    Article  CAS  PubMed  Google Scholar 

  • Kruithof BPT, Duim SN, Moerkamp AT, Goumans MJ (2012) TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 84:89–102

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB (2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One 6:e17531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeRoith D, Werner H, Beitner JD, Roberts CJ (1995) Molecular and cellular aspects of the insulin-like factor I receptor. Endocr Rev 16:143–163

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang C, **ao J, McKeehan WL, Wang F (2016) Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol 53:155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman MK, Otero-Vinas M, Falanga Y (2016) Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen 24:215–222

    Article  PubMed  Google Scholar 

  • Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX (2019) Current Progress in tendon and ligament tissue engineering. Tissue Eng Regen Med. 16(6):549–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Zhang L, Liu NQ, Yao Q, Van Handel B, Xu Y et al (2019) In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine 14:5831–5848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln J, Lange AW, Yutzey KE (2006a) Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 294:292–302

    Article  CAS  PubMed  Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2006b) BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292:290–302

    Article  CAS  Google Scholar 

  • Loiacono C, Palermi S, Massa B, Belviso I, Romano V, Di Gregorio A et al (2019) Tendinopathy: pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review. Medicina (Kaunas) 55:447

    Article  Google Scholar 

  • Loiselle AE, Bragdon GA, Jacobson JA, Hasslund S, Cortes ZE, Schwarz EM, Mitten DJ, Awad HA, O'Keefe RJ (2009) Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J Orthop Res 27:833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou J, Tu Y (2001) BMP-12 gene transfer augmentation of lacerated tendon repair. J Orthop Res 19:1199–1202

    Article  CAS  PubMed  Google Scholar 

  • Lovati AB, Corradetti B, Lange Consiglio A, Recordati C, Bonacina E, Bizzaro D, Cremonesi E (2011) Characterization and differentiation of equine tendon-derived progenitor cells. J Biol Regul Homeost Agents 25:S75–S84

    CAS  PubMed  Google Scholar 

  • Lyras DN, Kazakos K, Veretas D, Chronopoulos E, Folaranmi S, Agrogiannis G (2010) Effect of combined administration of transforming growth factor-b1 and insulin-like growth factor I on the mechanical properties of a patellar tendon defect model in rabbits. Acta Orthop Belg 76:380–386

    PubMed  Google Scholar 

  • Lyras DN, Kazakos K, Georgiadis G, Mazis G, Middleton R, Richards S, O'Connor D (2011) Does a single application of PRP alter the expression of IGF-I in the early phase of tendon healing? J Foot Ankle Surg 50:276–282

    Article  PubMed  Google Scholar 

  • Macias D, Ganan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Majewski M, Porter RM, Betz OB, Betz VM, Clahsen H, Flückiger R, Evans CH (2012) Improvement of tendon repair using muscle grafts transduced with TGF-β1 cDNA. Eur Cell Mater 23:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewski M, Heisterbach P, Jaquiéry C, Dürselen L, Todorov A, Martin IE et al (2018) Improved tendon healing using bFGF, BMP-12 and TGFβ1, in a rat model. Eur Cell Mater 13:318–334

    Article  Google Scholar 

  • Makanae A, Satoh A (2018) Ectopic Fgf signaling induces the intercalary response in develo** chicken limb buds. Zoological Lett 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Manske PR, Gelberman RH, Lesker PA (1985) Flexor tendon healing. Hand Clin 1:25–34

    Article  CAS  PubMed  Google Scholar 

  • Marfe G, Rotta G, De Martino L, Tafani M, Fiorito F, Di Stefano C, Polettini M, Ranalli M, Russo MA, Gambacurta A (2012) A new clinical approach: use of blood-derived stem cells (BDSCs) for superficial digital flexor tendon injuries in horses. Life Sci 90:825–830

    Article  CAS  PubMed  Google Scholar 

  • Mass DP, Tuel RJ (1990) Participation of human superficialis flexor tendon segments in repair in vitro. J Orthop Res 8:21–34

    Article  CAS  PubMed  Google Scholar 

  • Mass DP, Tuel RJ, Labarbera M, Greenwald DP (1993) Effects of constant mechanical tension on the healing of rabbit flexor tendons. Clin Orth Rel Res 296:301–306

    Article  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast BA, Haynes JH, Krummel TM, Diegelmann RF, Cohen IK (1992) In vivo degradation of fetal wound hyaluronic acid results in increased fibroplasia, collagen deposition, and neovascularization. Plast Reconstr Surg 89:503–509

    Article  CAS  PubMed  Google Scholar 

  • Mast BA, Frantz FW, Diegelmann RF, Krummel TM, Cohen IK (1995) Hyaluronic acid degradation products induce neovascularization and fibroplasia in fetal rabbit wounds. Wound Repair Regen 3:66–72

    Article  CAS  PubMed  Google Scholar 

  • McCoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516:583–592

    Article  Google Scholar 

  • McDonald NQ, Hendrickson WA (1993) A structural superfamily of growth factors containing a cystine knot motif. Cell 73:421–424

    Article  CAS  PubMed  Google Scholar 

  • McQuilling JP, Kimmerling KA, Staples MC, Mowry KC (2019) Evaluation of two distinct placental-derived membranes and their effect on tenocyte responses in vitro. J Tissue Eng Regen Med 13:1316–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messier C, Teutenberg K (2005) The role of insulin, insulin-like growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 12:311–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263

    Article  CAS  PubMed  Google Scholar 

  • Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33:381–394

    Article  PubMed  Google Scholar 

  • Moore YR, Dickinson DP, Wikesjö UME (2010) Growth/differentiation factor-5: a candidate therapeutic agent for periodontal regeneration? A review of pre-clinical data. J Clin Periodontol 37:288–298

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Nixon AJ (1997) Biochemical and site-specific effects of insulin-like growth factor I on intrinsic tenocyte activity in equine flexor tendons. Am J Vet Res 58:103–109

    CAS  PubMed  Google Scholar 

  • Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB (2007) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 25:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC (2009) Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res 27:639–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak M, Nag HL, Nag TC, Digge V, Yadav R (2020) Ultrastructural and histological changes in tibial remnant of ruptured anterior cruciate ligament stumps: a transmission electron microscopy and immunochemistry-based observational study. Musculoskelet Surg 104:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ngo M, Pham H, Longaker MT, Chang J (2001) Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plast Reconstr Surg 108:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151:247–254

    Article  CAS  PubMed  Google Scholar 

  • Nishio H, Saita Y, Kobayashi Y, Takaku T, Fukusato S, Uchino S et al (2020) Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regen Ther 14:262–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon AJ, Watts AE, Schnabel LV (2012) Cell- and gene-based approaches to tendon regeneration. J Shoulder Elb Surg 21:278–294

    Article  Google Scholar 

  • Noguchi M, Seiler JG, Gelberman RH, Sofranko RA, Woo SL-Y (1993) In vitro biomechanical analysis of suture methods for flexor tendon repair. J Orthop Res 11:603–611

    Article  CAS  PubMed  Google Scholar 

  • O’kane S, Ferguson MWJ (1997) Transforming growth factor βs and wound healing. Int J Biochem Cell Biol 29:63–78

    Article  PubMed  Google Scholar 

  • Ohashi Y, Nakase J, Shimozaki KT, Tsuchiya H (2018) Evaluation of dynamic change in regenerated tendons in a mouse model. J Exp Orthop. 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohberg L, Lorentzon R, Alfredson H (2001) Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg Sports Traumatol Arthrosc 9:235–238

    Article  Google Scholar 

  • Olesen JL, Heinemeier KM, Langberg H, Magnusson SP, Kjaer M (2006) Expression, content, and localization of insulin-like growth factor I in human Achilles tendon. Conn Tissue Res 37:200–206

    Article  CAS  Google Scholar 

  • Paoloni J, De Vos RJ, Hamilton B, Murrell GA, Orchard J (2011) Platelet-rich plasma treatment for ligament and tendon injuries. Clin J Sport Med 21:37–45

    Article  PubMed  Google Scholar 

  • Peloso JG, Mundy GD, Cohen ND (1994) Prevalence of, and factors associated with musculoskeletal racing injuries of thoroughbreds. J Am Vet Med Assoc 204:620–626

    CAS  PubMed  Google Scholar 

  • Petersen W, Pufe T, Zantop T, Tillmann B, Tsokos M, Mentlein R (2004) Expression of VEGFR-1 and VEGFR-2 in degenerative Achilles tendon. Clin Orthop 420:286–291

    Article  Google Scholar 

  • Pregizer SK, Mortlock DP (2015) Dynamics and cellular localization of Bmp2, Bmp4, and noggin transcription in the postnatal mouse skeleton. J Bone Miner Res 30:64–70

    Article  CAS  PubMed  Google Scholar 

  • Provenzano PP, Alejandro-Osorio AL, Grorud KW, Martinez DA, Vailas AC, Grindenland RE, Vanderby R Jr (2007) Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments. BMC Physiol 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pufe T, Petersen WJ, Kurz B, Tsokos M, Tillmann BN, Mentlein R (2003) Mechanical factors influence the expression of endostatin - an inhibitor of angiogenesis - in tendons. J Orthop Res 21:610–616

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Petersen W, Goldring MB, Mentlein R, Varoga D, Tsokos M, Tillmann B (2004) Endostatin - an inhibitor of angiogenesis - is expressed in human cartilage and fibrocartilage. Matrix Biol 23:267–276

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Petersen WJ, Mentlein R, Tillmann BN (2005a) The role of vasculature and angiogenesis for the pathogenesis of degenerative tendon disease. Scand J Med Sci Sports 15:211–222

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Kurz B, Petersen W, Varoga D, Mentlein R, Kulow S, Lemke A, Tillmann B (2005b) The influence of biomechanical parameters on the expression of VEGF and endostatin in the bone and joint system. Ann Anat 187:461–472

    Article  CAS  PubMed  Google Scholar 

  • Raghavan SS, Woon, C.Y., Kraus, A., Megerle, K., Pham, H., Chang, J. Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulatio. Plast Reconstr Surg 2012;129:479–489

    Google Scholar 

  • Raja S, Byakod G, Pudakalkatti P (2009) Growth factors in periodontal regeneration. Int J Dent Hygiene 7:82–89

    Article  CAS  Google Scholar 

  • Ramos DM, Abdulmalik S, Arul MR, Rudraiah S, Laurencin CT, Mazzocca AD et al (2019) Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering. Polym Adv Technol 30:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley G (2008) Tendinopathy – from basic science to treatment. Nat Clin Pract Rheumatol 4:82–89

    Article  PubMed  Google Scholar 

  • Riley GP, Curry V, DeGroot J, van El B, Verzijl N, Hazleman BL, Bank RA (2002) Matrix metalloproteinase activities and their relationship with collagen remodeling in tendon pathology. Matrix Biol 21:185–195

    Article  CAS  PubMed  Google Scholar 

  • Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27

    Google Scholar 

  • Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44(Suppl):534–539

    Google Scholar 

  • Roy V, Peretz EA (2009) Biologic therapy of breast cancer: focus on co-inhibition of endocrine and angiogenesis pathways. Breast Cancer Res Treat 116:31–38

    Article  PubMed  Google Scholar 

  • Sahin H, Tholema N, Petersen W, Raschke MJ, Stange R (2012a) Impaired biomechanical properties correlate with neoangiogenesis as well as VEGF and MMP-3 expression during rat patellar tendon healing. J Orthopaed Res 30(12):1952–1957

    Article  CAS  Google Scholar 

  • Sahin H, Tholema N, Raschke MJ, Stange R (2012b) Impaired biomechanical properties correlate with neoangiogenesis as well as VEGF and MMP-3 expression during rat patellar tendon healing. J Orthop Res 30:1952–1957

    Article  CAS  PubMed  Google Scholar 

  • Salingcarnboriboon RY, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300

    Article  CAS  PubMed  Google Scholar 

  • Saman H, Raza SS, Uddin S, Rasul K (2020) Inducing angiogenesis, a key step in Cancer vascularization, and treatment approaches. Cancers (Basel) 12:1172

    Article  CAS  Google Scholar 

  • Sardenberg T, Muller SS, Garms LZ, Miduati FB (2015) Immediate and late effects of sutures in extrasynovial tendons: biomechanical study in rats. Rev Bras Ortop 46:305–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Savitskaya YA, Izaguirre A, Sierra L, Perez F, Cruz F, Villalobos E, Almazan A, Ibarra C (2011) Effect of angiogenesis-related cytokines on rotator cuff disease: the search for sensitive biomarkers of early tendon degeneration. Clin Med Insights Arthritis Musculoskelet Disord 4:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RI, Snedeker JG (2010) Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31:7695–7704

    Article  CAS  PubMed  Google Scholar 

  • Sharma RI, Snedeker JG (2012) Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS One 7:e31504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Rymer B, Theobald P, Thomas PB (2015) A review of current concepts in flexor tendon repair: physiology, biomechanics, surgical technique and rehabilitation. Orthop Rev (Pavia) 7:6125

    Article  Google Scholar 

  • Södersten F, Hultenby K, Heinegård D, Johnston C, Ekman S (2013) Immunolocalization of collagens (I and III) and cartilage oligomeric matrix protein (COMP) in the normal and injured equine superficial digital flexor tendon. Conn Tissue Res. 54:62–69

    Article  CAS  Google Scholar 

  • Starman JS, Bosse MJ, Cates CA, Norton HJ (2012) Recombinant human bone morphogenetic protein-2 use in the off-label treatment of nonunions and acute fractures: a retrospective review. J Trauma Acute Care Surg 72:676–681

    Article  CAS  PubMed  Google Scholar 

  • Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ (1979) Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A 76:1279–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda N, Shiga M, Ganburged G, Moriyama K (2009) Marfan synfrome and its disorder in periodontal tissues. J Exp Zool (Mol Dev Evol) 312B:503–509

    Article  CAS  Google Scholar 

  • Suwalski A, Dabboue H, Delalande A, Bensamoun SF, Canon F, Midoux P, Saillant G, Klatzmann D, Salvetat JP, Pichon C (2010) Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials 31:5237–5245

    Article  CAS  PubMed  Google Scholar 

  • Svegliati-Baroni G, Ridolfi F, Di SA, Casini A, Marucci L, Gaggiotti G, Orlandoni P, Macarri G, Perego L, Benedetti A, Folli F (1999) Insulin and insulin-like growth factor-I stimulate proliferation and type I accumulation by hepatic stellate cells; differential effects on signal transduction pathways. Hepatology 29:1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Yoshida T, Miyagawa K, Sakamoto H, Terada M, Sugimura T (1987) cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity. Proc Natl Acad Sci U S A 84:2980–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takebayashi-Suzuki K, Suzuki A (2020) Intracellular communication among morphogen signaling pathways during vertebrate body plan formation. Genes (Basel) 11:341

    Article  CAS  Google Scholar 

  • Tan SL, Ahmad RE, Ahmad TS, Merican AM, Abbas AA, Ng WM, Kamarul T (2012) Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 196:325–338

    Article  CAS  PubMed  Google Scholar 

  • Taylor GP, Anderson R, Reginelli AD, Muneola K (1994) FGF-2 induces regeneration of the chick limb bud. Dev Biol 163:282–284

    Article  CAS  PubMed  Google Scholar 

  • Theodossiou SK, Schiele NR (2019) Models of tendon development and injury. BMC Biomed Eng 1:10

    Article  Google Scholar 

  • Thomopoulos S, Kim HM, Silva MJ, Ntouvali E, Manning CN, Potter R, Seeherman H, Gelberman RH (2012) Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model. J Orthop Res 30:1702–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuzaki M, Brigman BE, Yamamoto J, Lawrence WT, Simmons JG, Mohapatra NK, Lund PK, Van Wyk J, Hannafin JA, Bhargava MM, Banes AJ (2000) Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res 18:546–556

    Article  CAS  PubMed  Google Scholar 

  • Urist MR. Bone: formation by autoinduction. Science 1965;150:893–0

    Google Scholar 

  • Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012) Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthetic Surg 65:1712–1719

    Article  Google Scholar 

  • Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 10:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volk T (1999) Singling out Drosophila tendon cells: a dialogie between two distinct cell types. Trend Genet 15:448–453

    Article  CAS  Google Scholar 

  • Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A 85:9484–9488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QW, Chen ZL, Piao YJ (2005) Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 100:418–422

    Article  CAS  PubMed  Google Scholar 

  • Wilson JJ, Best TM (2005) Common overuse tendon problems: a review and recommendations for treatment. Am Fam Physician 72:711–718

    Google Scholar 

  • Witte TH, Yeager AE, Nixon AJ (2011) Intralesional injection of insulin-like growth factor-I for treatment of superficial digital flexor tendonitis in thoroughbred racehorses: 40 cases (2000–2004). J Am Vet Med Assoc 239:992–997

    Article  CAS  PubMed  Google Scholar 

  • Wolfman NM, Hattersley G, Cox A, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest 100:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL-Y, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH-C (1999) Tissue engineering of ligament and tendon healing. Clin Orth Rel Res 357S:S312–S323

    Article  Google Scholar 

  • Yamaguchi AF, T., Shimada S, Kanbayashi I, Tateoka M, Soya H, Takeda H, Morita I, Matsubara K, Hirai T (2006) Muscle IGF-I Ea, MGF, and myostatin mRNA expressions after compensatory overload in hypophysectomized rats. Pflugers Arch 453:203–210

    Article  CAS  PubMed  Google Scholar 

  • Yastrebov O, Lobenhoffer I (2009) Treatment of isolated and multiple ligament injuries of the knee: anatomy, biomechanics, diagnosis, indications for repair, surgery. Othopaed 38:563–580

    CAS  Google Scholar 

  • Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5(1):22–34

    CAS  PubMed  Google Scholar 

  • Yoon JH, Brooks RL Jr, Zhao JZ, Isaacs D, Halper J (2004) The effects of enrofloxacin on decorin and glycosaminoglycans in avian tendon cell cultures. Arch Toxicol 78(10):599–608

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Miyagawa K, Odagiri H, Sakamoto H, Little PF, Terada M, Sugimura T (1987) Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblasts growth factors and the int-2-encoded proteins. Proc Natl Acad Sci U S A 84:7305–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nie D, Williamson K, Rocha JL, Hogan MV, Wang JH (2019) Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing. J Tissue Eng 10

    Google Scholar 

  • Zhao C, Amadio PC, Zobitz ME, An KN (2001) Gliding characteristics of tendon repair in canine flexor digitorum profundus tendons. J Orthop Res 19:580–586

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Etter L, Hinton RB Jr, Benson DW (2007) BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn 236:971–980

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Halper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, J.H., Halper, J. (2021). Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. In: Halper, J. (eds) Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, vol 1348. Springer, Cham. https://doi.org/10.1007/978-3-030-80614-9_6

Download citation

Publish with us

Policies and ethics

Navigation