Chromogenic Materials

  • Chapter
  • First Online:
Advanced Materials

Abstract

Chromic materials on the surface of any materials are a focus of interest of the entire customer in the market nowadays. This chapter describes the fundamental of chromism in the various materials in various stimulated conditions. The history of chromogenic materials gives the idea of their nomenclature and materials development from ancient times to the current age. Categorization of the chromogenic system shows the various mechanism of chromism. Most applications of the materials such as photochromic, thermochromic, electrochromic materials, and so on, have been discussed with their materials behavior, mechanism, limitations. Hybrid chromic materials showing the integrity of various phenomenons in the materials to change their color are discussed briefly, which needs to be developed a lot in the current future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lampert, C.M.: Chromogenic smart materials. Mater. Today. 7(3), 28–35 (2004). https://doi.org/10.1016/S1369-7021(04)00123-3

    Article  CAS  Google Scholar 

  2. Lotzsch, D., Eberhardt, V., Rabe, C., Materials, C.: Ullmann’s encyclopedia of industrial. Chemistry. (2016). https://doi.org/10.1002/14356007.t07_t01

  3. https://www.yourdictionary.com/chromo. Accessed 02 May 2019

  4. https://en.wikipedia.org/wiki/Chromophore. Accessed 02 May 2019

  5. He, G.S., Tan, L.-S., Zheng, Q., Prasad, P.N.: Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108(4), 1245–1330 (2008). https://doi.org/10.1021/cr050054x

    Article  CAS  Google Scholar 

  6. Lang, F., Wang, H., Zhang, S., et al.: Review on variable emissivity Materials and devices based on smart Chromism. Int. J. Thermophys. 39, 6 (2018). https://doi.org/10.1007/s10765-017-2329-0

    Article  CAS  Google Scholar 

  7. https://www.marketwatch.com/press-release/smart-glass-market-global-share-size-trends-and-growth-analysis-forecast-to-2020-2024-2020-06-23?mod=mw_quote_news. Accessed 02 May 2019

  8. https://www.marketsandmarkets.com/Market-Reports/electrochromic-glass-market-110534618.html. Accessed 02 May 2019

  9. Huang, M.: Thesis: Encapsulation of Organic Thermochromic Materials with Silicon Dioxide. https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=9193&context=etd (2019)

  10. Akita, M.: Photochromic organometallics, a stimuli-responsive system: an approach to smart chemical systems. Organometallics. 30(1), 43–51 (2011). https://doi.org/10.1021/om100959h

    Article  CAS  Google Scholar 

  11. Renzi-Hammond, L., Buch, J.R., Cannon, J., Hacker, L., Toubouti, Y., Hammond, B.R.: A contra-lateral comparison of the visual effects of a photochromic vs. non-photochromic contact lens. Cont. Lens Anterior Eye. 43(3), 250–255 (2020). https://doi.org/10.1016/j.clae.2019.10.138

    Article  Google Scholar 

  12. Fenech, A.; (2011) Lifetime of Ccolor Photographs in Mixed Archival Collections. Doctoral thesis, UCL (University College London)., https://discovery.ucl.ac.uk/id/eprint/1333217

  13. https://en.wikipedia.org/wiki/Chromogenic_print. Accessed 06 May 2019

  14. Periyasamy, A.P., Vikova, M., Vik, M.: A review of photochromism in textiles and its measurement. Text. Progr., 53–136 (2017). https://doi.org/10.1080/00405167.2017.1305833

  15. Hadjoudisa, E., Mavridis, I.M.: Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 33, 579–588 (2004). https://doi.org/10.1039/B303644H

    Article  Google Scholar 

  16. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.2433&rep=rep1&type=pdf. Accessed 08 May 2019

  17. https://www.loc.gov/preservation/outreach/tops/wilhelm/index.html. Accessed 08 May 2019

  18. Mohr, G.J., Tirelli, N., Lohse, C., Spichiger-Keller, U.E.: Development of chromogenic copolymers for optical detection of amines. Adv. Mater. 10(16), 1353–1357 (1998). https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1353::AID-ADMA1353>3.0.CO;2-X

    Article  CAS  Google Scholar 

  19. Thummavichai, K., **a, Y., Zhu, Y.: Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Prog. Mater. Sci. 88, 281–324 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.003

    Article  CAS  Google Scholar 

  20. Medeiros, S.F., Santos, A.M., Fessi, H., Elaissari, A.: Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403(1–2), 139–161 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.011

    Article  CAS  Google Scholar 

  21. https://en.wikipedia.org/wiki/Chromism#:~:text=In%20chemistry%2C%20chromism%20is%20a,in%20the%20colors%20of%20compounds. Accessed 20 May 2019

  22. He, T., Yao, J.: Photochromism of molybdenum oxide. J Photochem Photobiol C: Photochem Rev. 4(2), 125–143 (2003). https://doi.org/10.1016/S1389-5567(03)00025-X

    Article  CAS  Google Scholar 

  23. Vekshin, N., Savintsev, I., Kovalev, A., Yelemessov, R., Wadkins, R.M.: Solvatochromism of the excitation and emission spectra of 7-Aminoactinomycin D: implications for drug recognition of DNA secondary structures. J. Phys. Chem. B. 105(35), 8461–8467 (2001). https://doi.org/10.1021/jp011168p

    Article  CAS  Google Scholar 

  24. Bo, J., Zhang, J., Ma, J.-Q., Zheng, W., Chen, L.-J., Sun, B., Li, C., Hu, B.-W., Tan, H., Li, X., Yang, H.-B.: Vapochromic behavior of a chair-shaped supramolecular Metallacycle with ultra-stability. J. Am. Chem. Soc. 138(3), 738–741 (2016). https://doi.org/10.1021/jacs.5b11409

    Article  CAS  Google Scholar 

  25. Papaefthimiou, S.: Chromogenic technologies: towards the realization of smart electrochromic glazing for energy-saving applications in buildings. Adv. Build. Energy Res. 4(1), 77–126 (2011). https://doi.org/10.3763/aber.2009.0404

    Article  Google Scholar 

  26. Mooradian, A.: Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969). https://doi.org/10.1103/PhysRevLett.22.185

    Article  CAS  Google Scholar 

  27. Chen, S., Hai, X., Chen, X.-W., Wang, J.-H.: In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 86(13), 6689–6694 (2014). https://doi.org/10.1021/ac501497d

    Article  CAS  Google Scholar 

  28. Ferrara, M., Bengisu, M.: Materials that change color. In: SpringerBriefs in Applied Sciences and Technology. Cham, Springer (2014). https://doi.org/10.1007/978-3-319-00290-3_2

    Chapter  Google Scholar 

  29. Webster, W.: Revelation and transparency in cColor vision refuted: a case Oo mind/brain identity and another bridge over the explanatory gap. Synthese. 133, 419–439 (2002). https://doi.org/10.1023/A:1021294209237

    Article  Google Scholar 

  30. Shang, M., Li, C., Lin, J.: How to produce white light in a single-phase host? Chem. Soc. Rev. 43, 1372–1386 (2014). https://doi.org/10.1039/C3CS60314H

    Article  CAS  Google Scholar 

  31. Faughnan, B.W., Staebler, D.L., Kiss, Z.J.: In: Wolfe, R. (ed.) Inorganic Photochromic Materials Applied Solid State Science, vol. 2, pp. 107–172., ISBN 9780120029020. Elsevier, Netherland (1971). https://doi.org/10.1016/B978-0-12-002902-0.50009-0

  32. Crano, J.C.: Chromogenic materials, photochromic. In: Kirk‐Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., Hoboken, NJ (2000). https://doi.org/10.1002/0471238961.1608152003180114.a01

    Chapter  Google Scholar 

  33. Granqvist, C.G.: Chromogenic materials for transmittance control of large-area windows. Crit. Rev. Solid State Mater. Sci. 16(5), 291–308 (1990). https://doi.org/10.1080/10408439008242184

    Article  CAS  Google Scholar 

  34. Štangar, U.L., Orel, B., Régis, A., et al.: Chromogenic WPA/TiO 2 hybrid gels and films. J. Sol-Gel Sci. Technol. 8, 965–971 (1997). https://doi.org/10.1023/A:1018305501973

    Article  Google Scholar 

  35. Sousa, C.M., Berthet, J., Delbaere, S., Polónia, A., Coelho, P.J.: Fast color change with photochromic fused Naphthopyrans. J. Org. Chem. 80(24), 12177–12181 (2015). https://doi.org/10.1021/acs.joc.5b02116

    Article  CAS  Google Scholar 

  36. Rouhani, M., Hobley, J., Subramanian, G.S., Phang, I.Y., Foo, Y.L., Gorelik, S.: The influence of initial stoichiometry on the mechanism of photochromism of molybdenum oxide amorphous films. Solar Energy Mater. Solar Cells. 126, 26–35 (2014). https://doi.org/10.1016/j.solmat.2014.03.033

    Article  CAS  Google Scholar 

  37. Shen, Y., Yan, P., Yang, Y., Hu, F., **ao, Y., Pan, L., Li, Z.: Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloys Comp. 629, 27–31 (2015). https://doi.org/10.1016/j.jallcom.2014.11.218

    Article  CAS  Google Scholar 

  38. Hea, T., Yao, J.: Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007). https://doi.org/10.1039/B709380B

    Article  Google Scholar 

  39. Glebov, L.B.: Photochromic and Photo-Thermo-Refractive Glasses. In: Encyclopedia of Smart Materials. John Wiley & Sons, Inc., Hoboken, NJ (2002). https://doi.org/10.1002/0471216275.esm06

    Chapter  Google Scholar 

  40. Gilroy, D., Conway, B.E.: Surface oxidation and reduction of platinum electrodes: coverage, kinetic and hysteresis studies. Can. J. Chem. 46(6), 875–890 (1968). https://doi.org/10.1139/v68-149

    Article  CAS  Google Scholar 

  41. Abazari, R., Sanati, S.: Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: morphology, crystal structure, and their optical properties. Superlatt. Microstruct. 64, 148–157 (2013). https://doi.org/10.1016/j.spmi.2013.09.017

    Article  CAS  Google Scholar 

  42. Smith, G.P.: Photochromic glasses: properties and applications. J. Mater. Sci. 2, 139–152 (1967). https://doi.org/10.1007/BF00549573

    Article  CAS  Google Scholar 

  43. Li, S.-L., Han, M., Zhang, Y., Li, G.-P., Li, M., He, G., Zhang, X.-M.: X-ray and UV dual Photochromism, Thermochromism, Electrochromism, and amine-selective Chemochromism in an Anderson-like Zn7 cluster-based 7-fold interpenetrated framework. J. Am. Chem. Soc. 141(32), 12663–12672 (2019). https://doi.org/10.1021/jacs.9b04930

    Article  CAS  Google Scholar 

  44. Yao, J., Hashimoto, K., Fujishima, A.: Photochromism induced in an electrolytically pretreated Mo03 thin film by visible light. Nature. 355, 624–626 (1992). https://doi.org/10.1038/355624a0

    Article  CAS  Google Scholar 

  45. Jiang, S., Ichihashi, J., Monobe, H., Fujihira, M., Ohtsu, M.: Highly localized photochemical processes in LB films of photo chromic material by using a photon scanning tunneling microscope. Opt. Commun. 106(4–6), 173–177 (1994). https://doi.org/10.1016/0030-4018(94)90316-6

    Article  CAS  Google Scholar 

  46. Masahiro Irie, Photochromic diarylethenes for optical data storage media, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 227, 1993 - 1, 263–270, https://doi.org/10.1080/10587259308030979

    Chapter  Google Scholar 

  47. Wang, L., Li, Q.: Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications. Adv. Funct. Mater. 26(1), 10–28 (2016). https://doi.org/10.1002/adfm.201502071

    Article  CAS  Google Scholar 

  48. Moritzen, P.A., El-Awady, A.A., Harris, G.M.: Kinetics and mechanisms of the formation, acid-catalyzed decomposition and intramolecular isomerization of oxygen-bonded (sulfito)pentaaquochromium(III) perchlorate. Inorg. Chem. 1985. 24(3), 313–318 (1985). https://doi.org/10.1021/ic00197a015

    Article  CAS  Google Scholar 

  49. Ma, C., Taya, M., Xu, C.: Smart sunglasses based on electrochromic polymers. Polym. Eng. Sci. 48(11), 2224–2228 (2008). https://doi.org/10.1002/pen.21169

    Article  CAS  Google Scholar 

  50. Wang, L., Li, Q.: Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev. 47, 1044–1097 (2018). https://doi.org/10.1039/C7CS00630F

    Article  CAS  Google Scholar 

  51. Khattab, T.A., Rehan, M., Hamouda, T.: Smart textile framework: photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohydr. Polym. 195, 143–152 (2018). https://doi.org/10.1016/j.carbpol.2018.04.084

    Article  CAS  Google Scholar 

  52. Wang, S., Liu, X., Yang, M., Zhang, Y., **ang, K., Tang, R.: Review of time temperature indicators as quality monitors in food packaging. Packag. Technol. Sci. 28(10), 839–867 (2015). https://doi.org/10.1002/pts.2148

    Article  CAS  Google Scholar 

  53. White, M.A., LeBlanc, M.: Thermochromism in commercial products. J. Chem. Educ. 76(9), 1201 (1999). https://doi.org/10.1021/ed076p1201

    Article  CAS  Google Scholar 

  54. Garmaise, I., Garmaise, D.: Temperature sensing and indicating beverage mug. Patent no: US5678925A (1995)

    Google Scholar 

  55. Garshasbi, S., Santamouris, M.: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Mater. Solar Cells. 191, 21–32 (2019). https://doi.org/10.1016/j.solmat.2018.10.023

    Article  CAS  Google Scholar 

  56. Seeboth, A., Ruhmann, R., Mühling, O.: Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials. 3(12), 5143–5168 (2010). https://doi.org/10.3390/ma3125143

    Article  CAS  Google Scholar 

  57. Zhang, Z., Guo, L., Zhang, X., Hao, J.: Environmentally stable, photochromic and thermotropic organohydrogels for low cost on-demand optical devices. J. Colloid Interf. Sci. 578, 315–325 (2020). https://doi.org/10.1016/j.jcis.2020.05.110

    Article  CAS  Google Scholar 

  58. Cheng, Y., Zhang, X., Fang, C., Chen, J., Wang, Z.: Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: a review. J. Mater. Sci. Technol. 34(12), 2225–2234 (2018). https://doi.org/10.1016/j.jmst.2018.05.016

    Article  Google Scholar 

  59. Lataste, E., Demourgues, A., Salmi, J., Naporea, C., Gaudon, M.: Thermochromic behavior (400<T°C<1200°C) of barium carbonate/binary metal oxide mixtures. Dyes Pigments. 91(3), 396–403 (2011). https://doi.org/10.1016/j.dyepig.2011.05.016

    Article  CAS  Google Scholar 

  60. Chowdhury, M.A., Joshi, M., Butola, B.S.: Photochromic and Thermochromic colorants in textile applications. J. Eng. Fibers Fabr. 9(1), 107–123 (2014). https://doi.org/10.1177/155892501400900113

    Article  Google Scholar 

  61. Chunhua, H., Englert, U.: Crystal-to-crystal transformation from a chain polymer to a two-dimensional network at low temperatures. Angewandte Chem. 44(15), 2281–2283 (2005). https://doi.org/10.1002/anie.200462100

    Article  CAS  Google Scholar 

  62. Guinneton, F., Sauques, L., Valmalette, J.-C., Cros, F., Gavarri, J.-R.: Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials. J. Phys. Chem. Solids. 66(1), 63–73 (2005). https://doi.org/10.1016/j.jpcs.2004.08.032

    Article  CAS  Google Scholar 

  63. Sage, I.: Thermochromic liquid crystals. Liquid Cryst. 38(11–12), 1551–1561 (2011). https://doi.org/10.1080/02678292.2011.631302

    Article  CAS  Google Scholar 

  64. Sun, C., Xu, G., Jiang, X.-M., Wang, G.-E., Guo, P.-Y., Wang, M.-S., Guo, G.-C.: Design strategy for improving optical and electrical properties and stability of Lead-halide semiconductors. J. Am. Chem. Soc. 140(8), 2805–2811 (2018). https://doi.org/10.1021/jacs.7b10101

    Article  CAS  Google Scholar 

  65. Niklasson, G.A., Li, S.-Y., Granqvist, C.G.: Thermochromic vanadium oxide thin films: electronic and optical properties. J. Phys.: Conf. Ser. 559, 012001 (2014). https://doi.org/10.1088/1742-6596/559/1/012001

    Article  Google Scholar 

  66. Goran, G.C., et al.: Chromogenics for sustainable energy: some advances in thermochromics and electrochromics. Adv. Sci. Technol. 75., Trans Tech Publications, Ltd., 55–64 (2010). https://doi.org/10.4028/www.scientific.net/ast.75.55

    Article  Google Scholar 

  67. Khalid, M.W., Whitehouse, C., Ahmed, R., Hassan, M.U., Butt, H.: Remote thermal sensing by integration of corner-cube optics and thermochromic materials. Adv. Optic. Mater. 7, 2 (2019). https://doi.org/10.1002/adom.201801013

    Article  CAS  Google Scholar 

  68. Wilcox, I.: Beverage container having thermal indicator. Patent no: US20030000451A1 (2001).

    Google Scholar 

  69. Friend, C.M., Thorpe, C.: Smart consumer goods. In: Proc. SPIE 4763, European Workshop on Smart Structures in Engineering and Technology. SPIE, Bellingham, WA (2003). https://doi.org/10.1117/12.508658

    Chapter  Google Scholar 

  70. Bastiani, M.D., Saidaminov, M.I., Dursun, I., Sinatra, L., Peng, W., Buttner, U., Mohammed, O.F., Bakr, O.M.: Thermochromic perovskite inks for reversible smart window applications. Chem. Mater. 29(8), 3367–3370 (2017). https://doi.org/10.1021/acs.chemmater.6b05112

    Article  CAS  Google Scholar 

  71. Salamati, M., Kamyabjou, G., Mohamadi, M., Taghizade, K., Kowsari, E.: Preparation of TiO2@W-VO2 thermochromic thin film for the application of energy efficient smart windows and energy modeling studies of the produced glass. Constr. Build. Mater. 218, 477–482 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.046

    Article  CAS  Google Scholar 

  72. Kevin, A.T.: Container with thermochromic indicator. Patent no: US20120152781A1 (2011).

    Google Scholar 

  73. https://www.newscientist.com/article/dn13592-intelligent-paint-turns-roads-pink-in-icy-conditions/

  74. Mortimer, R.J.: Electrochromic materials. Annu. Rev. Mater. Res. 41, 241–268 (2011). https://doi.org/10.1146/annurev-matsci-062910-100344

    Article  CAS  Google Scholar 

  75. Thrivikraman, G., Boda, S.K., Basu, B.: Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials. 150, 60–86 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.003

    Article  CAS  Google Scholar 

  76. Cossari, P., Pugliese, M., Gambino, S., Cannavale, A., Maiorano, V., Gigliab, G., Mazzeo, M.: Fully integrated electrochromic-OLED devices for highly transparent smart glasses. J. Mater. Chem. C. 6, 7274–7284 (2018). https://doi.org/10.1039/C8TC01665H

    Article  CAS  Google Scholar 

  77. Svensson, J.S.E.M., Granqvist, C.G.: Electrochromic hydrated nickel oxide coatings for energy efficient windows: optical properties and coloration mechanism. Appl. Phys. Lett. 49, 1566 (1986). https://doi.org/10.1063/1.97281

    Article  CAS  Google Scholar 

  78. Somani, P.R., Radhakrishnan, S.: Electrochromic materials and devices: present and future. Mater. Chem. Phys. 77(1), 117–133 (2003). https://doi.org/10.1016/S0254-0584(01)00575-2

    Article  CAS  Google Scholar 

  79. Rowley, N.M., Mortimer, R.J.: New electrochromic Materials. Sci. Prog. 85(3), 243–262 (2002). https://doi.org/10.3184/003685002783238816

    Article  CAS  Google Scholar 

  80. Li, X., Perera, K., He, J., Gumyusenge, A., Mei, J.: Solution-processable electrochromic materials and devices: roadblocks and strategies towards large-scale applications. J. Mater. Chem. C. 7, 12761–12789 (2019). https://doi.org/10.1039/C9TC02861G

    Article  CAS  Google Scholar 

  81. Shah, K.W., Wang, S.-X., Soo, D.X.Y., Xu, J.: Viologen-based electrochromic materials: from small molecules, polymers and composites to their applications. Polymers. 11(11), 1839 (2019). https://doi.org/10.3390/polym11111839

    Article  CAS  Google Scholar 

  82. Lampert, C.M.: Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells. 76(4), 489–499 (2003). https://doi.org/10.1016/S0927-0248(02)00259-3

    Article  CAS  Google Scholar 

  83. Cantão, M.P., Cisneros, J.I., Torresi, R.M.: Electrochromic behavior of sputtered titanium oxide thin films. Thin Solid Films. 259(1), 70–74 (1995). https://doi.org/10.1016/0040-6090(94)06401-6

    Article  Google Scholar 

  84. Carpenter, M.K., Conell, R.S., Simko, S.J.: Electrochemistry and electrochromism of vanadium hexacyanoferrate. Inorg. Chem. 29(4), 845–850 (1990). https://doi.org/10.1021/ic00329a054

    Article  CAS  Google Scholar 

  85. Özer, N., Barreto, T., Büyüklimanli, T., Lampert, C.M.: Characterization of sol-gel deposited niobium pentoxide films for electrochromic devices. Sol. Energy Mater. Sol. Cells. 36(4), 433–443 (1995). https://doi.org/10.1016/0927-0248(94)00197-9

    Article  Google Scholar 

  86. Chigane, M., Ishikawa, M., Izaki, M.: Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism. J. Electrochem. Soc. 148, 7. https://doi.org/10.1149/1.1376637

  87. Burdukov, A.B., Vershinin, M.A., Pervukhina, N.V., Boguslvaskii, E.G., Eltsov, I.V., Shundrin, L.A., Selector, S.L., Shokurov, A.V., Voloshin, Y.Z.: Towards the clathrochelate-based electrochromic materials: the case study of the first iron(II) cage complex with an annelated quinoxaline fragment. Inorgan. Chem. Commun. 44, 183–187 (2014). https://doi.org/10.1016/j.inoche.2014.03.032

    Article  CAS  Google Scholar 

  88. **, T., **angkai, F., Jiang, Q., Liu, Z., Chen, G.: The synthesis and electrochemical properties of cathodic–anodic composite electrochromic materials. Dyes Pigments. 88(1), 39–43 (2011). https://doi.org/10.1016/j.dyepig.2010.04.012

    Article  CAS  Google Scholar 

  89. Dautremont-Smith, W.C.: Transition metal oxide electrochromic materials and displays: a review: part 2: oxides with anodic coloration. Displays. 3(2), 67–80 (1982). https://doi.org/10.1016/0141-9382(82)90100-7

    Article  CAS  Google Scholar 

  90. Kubo, T., Shinada, T., Kobayashi, Y., Imafuku, H., Toya, T., Akita, S., Nishikitani, Y., Watanabe, H.: Current state of the art for NOC-AGC electrochromic windows for architectural and automotive applications. Solid State Ion. 165(1–4), 209–216 (2003). https://doi.org/10.1016/j.ssi.2003.08.043

    Article  CAS  Google Scholar 

  91. Aegerter, M.A.: Sol–gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol. Energy Mater. Sol. Cells. 3–4, 401–422 (2001). https://doi.org/10.1016/S0927-0248(00)00372-X

    Article  Google Scholar 

  92. Cogan, S.F., Anderson, E.J., Plante, T.D., Rauh, R.D.: Electrochemical investigation of electrochromism in transparent conductive oxides. Appl. Opt. 24(15), 2282–2283 (1985). https://doi.org/10.1364/AO.24.002282

    Article  CAS  Google Scholar 

  93. Mortimer, R.J.: Switching colors with electricity: electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics. Am. Scientist. 101(1), 38 (2013) Gale Academic OneFile, Accessed 23 Aug 2020

    Article  Google Scholar 

  94. Kobayashi, N., Miura, S., Nishimura, M., Urano, H.: Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells. 92(2), 136–139 (2008). https://doi.org/10.1016/j.solmat.2007.02.027

    Article  CAS  Google Scholar 

  95. https://www.ainonline.com/sites/default/files/pdf/ain_2017_completions_0.pdf. Accessed 24 May 2019

  96. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.3522&rep=rep1&type=pdf. Accessed 24 May 2019

  97. Lakshmanan, R., Raja, P.P., Shivaprakash, N.C., Sindhu, S.: Fabrication of fast switching electrochromic window based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film. J. Mater. Sci: Mater. Electron. 27, 6035–6042 (2016). https://doi.org/10.1007/s10854-016-4527-0

    Article  CAS  Google Scholar 

  98. Granqvist, C.G.: Electrochromism and smart window design. Solid State Ion. 53–56(Part 1), 479–489 (1992). https://doi.org/10.1016/0167-2738(92)90418-O

    Article  Google Scholar 

  99. Ashrit, P.V., Bader, G., Girouard, F.E., Truong, V.-V.: Electrochromic materials for smart window applications. In: Proc. SPIE 1401, Optical Data Storage Technologies. SPIE, Bellingham, WA (1991). https://doi.org/10.1117/12.26121

    Chapter  Google Scholar 

  100. Nicoletta, F.P., Chidichimo, G., Cupelli, D., De Filpo, G., De Benedittis, M., Gabriele, B., Salerno, G., Fazio, A.: Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device. Adv. Funct. Mater. 15(6), 995–999 (2005). https://doi.org/10.1002/adfm.200400403

    Article  CAS  Google Scholar 

  101. Goodman, L.A.: Passive liquid displays: liquid crystals, electrophoretics, and electrochromics. IEEE Trans. Consum. Electron. CE-21(3), 247–259 (1975). https://doi.org/10.1109/TCE.1975.266744.

    Article  Google Scholar 

  102. Cao, X., Lau, C., Liu, Y., Wu, F., Gui, H., Liu, Q., Ma, Y., Wan, H., Amer, M.R., Zhou, C.: Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano. 10(11), 9816–9822 (2016). https://doi.org/10.1021/acsnano.6b05368

    Article  CAS  Google Scholar 

  103. Patil, P.S.: Gas-chromism in ultrasonic spray pyrolyzed tungsten oxide thin films. Bull. Mater. Sci. 23, 309–312 (2000). https://doi.org/10.1007/BF02720088

    Article  CAS  Google Scholar 

  104. Parthibavarman, M., Karthik, M., Prabhakaran, S.: Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum. 155, 224–232 (2018). https://doi.org/10.1016/j.vacuum.2018.06.021

    Article  CAS  Google Scholar 

  105. van der Sluis, P.: Chemochromic optical switches based on metal hydrides. Electrochim. Acta. 44(18), 3063–3066 (1999). https://doi.org/10.1016/S0013-4686(99)00021-3

    Article  Google Scholar 

  106. Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W., Walze, G.: Gasochromic windows. Sol. Energy Mater. Sol. Cells. 84(1–4), 305–314 (2004). https://doi.org/10.1016/j.solmat.2004.01.040

    Article  CAS  Google Scholar 

  107. Tung, T.T., Duke III, C.B., Junker, C.S., O’Brien, C.M., Ross II, C.R., Barnes, C.E., Webster, C.E., Burkey, T.J.: Linkage isomerization as a mechanism for photochromic materials: cyclopentadienyl manganese tricarbonyl derivatives with chelatable functional groups. Organometallics. 27(2), 289–296 (2008). https://doi.org/10.1021/om701101h

    Article  CAS  Google Scholar 

  108. Lee, Y.-A., Kalanur, S.S., Shim, G., Park, J., Seo, H.: Highly sensitive gasochromic H2 sensing by nano-columnar WO3-Pd films with surface moisture. Sensors Actuators B Chem. 238, 111–119 (2017). https://doi.org/10.1016/j.snb.2016.07.058

    Article  CAS  Google Scholar 

  109. Hu, C.-W., Yamada, Y., Yoshimura, K.: Fabrication of nickel oxyhydroxide/palladium (NiOOH/Pd) nanocomposite for gasochromic application. Sol. Energy Mater. Sol. Cells. 177, 120–127 (2018). https://doi.org/10.1016/j.solmat.2017.01.021

    Article  CAS  Google Scholar 

  110. Takahashi, H., Okazaki, S., Nishijima, Y., Arakawa, T.: Optimization of hydrogen sensing performance of Pt/WO3 Gasochromic film fabricated by sol–gel method. Sens. Mater. 29(9), 1259–1268 (2017). https://doi.org/10.18494/SAM.2017.1585

    Article  CAS  Google Scholar 

  111. Hupp, B., Nitsch, J., Schmitt, T., Bertermann, R., Edkins, K., Hirsch, F., Fischer, I., Auth, M., Sperlich, A., Doz, P., Steffen, A.: Stimulus-triggered formation of an anion–cation exciplex in Copper(I) complexes as a mechanism for mechanochromic phosphorescence. Angewandte Chem. 57(41), 13671–13675 (2018). https://doi.org/10.1002/anie.201807768

    Article  CAS  Google Scholar 

  112. https://www.aber.ac.uk/en/news/archive/2016/08/title-189046-en.html. Accessed 28 May 2019

  113. https://www.polymersolutions.com/blog/polymer-opals/. Accessed 28 May 2019

  114. Ruhl, T., Spahn, P., Hellmann, G.P.: Artificial opals prepared by melt compression. Polymer. 44(25), 7625–7634 (2003). https://doi.org/10.1016/j.polymer.2003.09.047

    Article  CAS  Google Scholar 

  115. Jiang, Y.: An outlook review: Mechanochromic materials and their potential for biological and healthcare applications. Mater. Sci. Eng. C. 45, 682–689 (2014). https://doi.org/10.1016/j.msec.2014.08.027

    Article  CAS  Google Scholar 

  116. Fleischmann, C., Lievenbrück, M., Ritter, H.: Polymers and dyes: developments and applications. Polymers. 7(4), 717–746 (2015). https://doi.org/10.3390/polym7040717

    Article  CAS  Google Scholar 

  117. Chen, F., Zhang, J., Wan, X.: Anthraquinone-imide-based dimers: synthesis, piezochromism, liquid crystalline and near-infrared electrochromic properties, Volume212, Issue17. September. 1, 1836–1845 (2011). https://doi.org/10.1002/macp.201100065

    Article  CAS  Google Scholar 

  118. Okazaki, M., Takeda, Y., Data, P., Pander, P., Higginbotham, H., Monkman, A.P., Minakata, S.: Thermally activated delayed fluorescent phenothiazine–dibenzo[a, j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. 8, 2677–2686 (2017). https://doi.org/10.1039/C6SC04863C

    Article  CAS  Google Scholar 

  119. Klajn, R.: Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014). https://doi.org/10.1039/C3CS60181A

    Article  CAS  Google Scholar 

  120. Stephanie, L., Potisek Douglas, A., DavisScott, R., White Nancy, R., Sottos Jeffrey, S.: Moore, self-assessing mechanochromic materials, patent no: US8236914B2 (2008).

    Google Scholar 

  121. Patel, M., Mintel, T.E., Kennedy, S., Gatzemeyer, J.J., Jimenez, E.J.: Toothbrush including a device for indicating brushing force. Patent no: US9578957B2 (2011).

    Google Scholar 

  122. Han, X., Liu, Y., Liu, G., Luo, J., Liu, S.H., Zhao, W., Yin, J.: A versatile naphthalimide–sulfonamide-coated tetraphenylethene: aggregation-induced emission behavior, mechanochromism, and tracking glutathione in living cells. Aggr. Induced Emission. 14(6), 890–895 (2019). https://doi.org/10.1002/asia.201801854

    Article  CAS  Google Scholar 

  123. https://technicalpaintservices.co.uk/catalogue/Tennis-Court-Paint-MUGAs-Line-and-Marking-Paints/

  124. Qiu, W., Gurr, P.A., da Silva, G., Qiao, G.G.: Insights into the mechanochromism of spiropyran elastomers. Polym. Chem. 10, 1650–1659 (2019). https://doi.org/10.1039/C9PY00017H

    Article  CAS  Google Scholar 

  125. https://en.wikipedia.org/wiki/Weighing_scale

  126. Walter, B.M.: Coextruded, heat-shrinkable, multi-layer, polyolefin packaging film. Patent no. US4352849A (1981).

    Google Scholar 

  127. Calvino, C., Neumann, L., Weder, C., Schrettl, S.: Approaches to polymeric mechanochromic materials. Ben Zhong Tang Trib. Spec. Iss. 55(4), 640–652 (2016). https://doi.org/10.1002/pola.28445

    Article  CAS  Google Scholar 

  128. https://www.pharmapproach.com/plastic-containers-for-pharmaceutical-use/

  129. Ferrara, M., Bengisu, M.: Manufacturing and processes related to chromogenic materials and applications. In: Materials that Change Color. SpringerBriefs in Applied Sciences and Technology. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00290-3_3

    Chapter  Google Scholar 

  130. Liu, P., Lee, S.-H., Tracy, C.E., Turner, J.A., Pitts, J.R., Deb, S.K.: Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide. Solid State Ion. 165(1–4), 223–228 (2003). https://doi.org/10.1016/j.ssi.2003.08.044

    Article  CAS  Google Scholar 

  131. Wang, M., Koski, K.J.: Reversible Chemochromic MoO3 nanoribbons through Zerovalent metal intercalation. ACS Nano. 9(3), 3226–3233 (2015). https://doi.org/10.1021/acsnano.5b0033

    Article  CAS  Google Scholar 

  132. Hariharan, P.S., Mothi, E.M., Moon, D., Anthony, S.P.: Halochromic isoquinoline with mechanochromic triphenylamine: smart fluorescent material for rewritable and self-erasable fluorescent platform. ACS Appl. Mater. Interf. 8(48), 33034–33042 (2016). https://doi.org/10.1021/acsami.6b11939

    Article  CAS  Google Scholar 

  133. Rosace, G., Guido, E., Colleoni, C., Brucale, M., Piperopoulos, E., Milone, C., Plutino, M.R.: Halochromic resorufin-GPTMS hybrid sol-gel: Chemical-physical properties and use as pH sensor fabric coating. Sens. Actuators B Chem. 241, 85–95 (2017). https://doi.org/10.1016/j.snb.2016.10.038

    Article  CAS  Google Scholar 

  134. Innocenzi, P., Brusatin, G., Abbotto, A., et al.: Entrap** of push-pull Zwitterionic chromophores in hybrid matrices for photonic applications. J. Sol-Gel Sci. Technol. 26, 967–970 (2003). https://doi.org/10.1023/A:1020705312269

    Article  CAS  Google Scholar 

  135. Inganäs, O., Salaneck, W.R., Österholm, J.-E., Laakso, J.: Thermochromic and solvatochromic effects in poly(3-hexylthiophene). Synth. Met. 22(4), 395–406 (1988). https://doi.org/10.1016/0379-6779(88)90110-5

    Article  Google Scholar 

  136. https://sites.google.com/site/smartmaterialswebsite/home/6-01-standard-one-foundations-for-leadership/standard-2-contextual-understanding/standard-3-planning-and-organization

  137. Qi, S., Ren, X.-T., Dai, Y.-X., Wang, K., Li, W.-T., Gong, T., Fang, J.-J., Bo, Z., Gao, E.-Q., Wang, L.: Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chem. Sci. 8, 2758–2768 (2017). https://doi.org/10.1039/C6SC04579K

    Article  CAS  Google Scholar 

  138. Hazra, A., Roy, A., Bhattacharjee, A., Barma, A., Roy, P.: Quinoline based chromogenic and fluorescence chemosensor for pH: effect of isomer. J. Mol. Struct. 1201, 127173 (2020). https://doi.org/10.1016/j.molstruc.2019.127173

    Article  CAS  Google Scholar 

  139. Mohajeri, N., T-Raissi, A., Bokerman, G., Captain, J.E., Peterson, B.V., Whitten, M., Trigwell, S., Berger, C., Brenner, J.: TEM–XRD analysis of PdO particles on TiO2 support for chemochromic detection of hydrogen. Sensors Actuators B Chem. 144(1), 208–214 (2010). https://doi.org/10.1016/j.snb.2009.10.064

    Article  CAS  Google Scholar 

  140. Sakhri, A., Perrin, F.X., Aragon, E., Lamouric, S., Benaboura, A.: Chlorinated rubber paints for corrosion prevention of mild steel: a comparison between zinc phosphate and polyaniline pigments. Corros. Sci. 52(3), 901–909 (2010). https://doi.org/10.1016/j.corsci.2009.11.010

    Article  CAS  Google Scholar 

  141. Zhao, W., Monsur Ali, M., Aguirre, S.D., Brook, M.A., Li, Y.: Paper-based bioassays using gold nanoparticle colorimetric probes, anal. Chem. 80(22), 8431–8437 (2008). https://doi.org/10.1021/ac801008q

    Article  CAS  Google Scholar 

  142. Yan, X., Chang, Y., Qian, X.: Effect of concentration of thermochromic ink on performance of waterborne finish films for the surface of Cunninghamia Lanceolata. Polymers. 12(3), 552 (2020). https://doi.org/10.3390/polym12030552

    Article  CAS  Google Scholar 

  143. Lee, J., Pyo, M., Lee, S., et al.: Hydrochromic conjugated polymers for human sweat pore map**. Nat. Commun. 5, 3736 (2014). https://doi.org/10.1038/ncomms4736

    Article  CAS  Google Scholar 

  144. https://ntrs.nasa.gov/search.jsp?R=20110003553

  145. Chen, S., Liu, J., Zhang, S., Zhao, E., Yu, C.Y.Y., Hushiarian, R., Hong, Y., Tang, B.Z.: Biochromic silole derivatives: a single dye for differentiation, quantitation and imaging of live/dead cells. Mater. Horiz. 5, 969–978 (2018). https://doi.org/10.1039/C8MH00799C

    Article  CAS  Google Scholar 

  146. Bloor, D.: Experimental studies of polydiacetylene: model conjugated polymers. In: André, J.M., Bredas, J.L., Delhalle, J., Ladik, J., Leroy, G., Moser, C. (eds.) Recent Advances in the Quantum Theory of Polymers. Lecture Notes in Physics, vol. 113. Springer, Berlin, Heidelberg (1980). https://doi.org/10.1007/3540097317_71

    Chapter  Google Scholar 

  147. Kita, E., Marai, H., Michał, L., et al.: Mixed-ligand chromium(III)-oxalate-pirydinedicarboxylate complexes: potential biochromium sources: kinetic studies in NaOH solutions and effect on 3T3 fibroblasts proliferation. Transit. Met. Chem. 35, 177–184 (2010). https://doi.org/10.1007/s11243-009-9311-z

    Article  CAS  Google Scholar 

  148. Jelinek, R., Okada, S., Norvez, S., Charych, D.: Interfacial catalysis by phospholipases at conjugated lipid vesicles: colorimetric detection and NMR spectroscopy. Chem. Biol. 5(11), 619–629 (1998). https://doi.org/10.1016/S1074-5521(98)90290-3

    Article  CAS  Google Scholar 

  149. Page, T.H., Brown, A., Timms, E.M., Foxwell, B.M.J., Ray, K.P.: Inhibitors of p38 suppress cytokine production in rheumatoid arthritis synovial membranes: does variable inhibition of interleukin-6 production limit effectiveness in vivo? Arthritis Rheum. 62(11), 3221–3231 (2010). https://doi.org/10.1002/art.27631

    Article  CAS  Google Scholar 

  150. Zhao, B., Wang, X., **, H., Feng, H., Shen, G., Cao, Y., Yu, C., Lu, Z., Zhang, Q.: Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in **angshan Bay, China (2011–2016). Chemosphere. 212, 1163–1171 (2018). https://doi.org/10.1016/j.chemosphere.2018.09.020

    Article  CAS  Google Scholar 

  151. Yousef, E.S.S.: Linear and non-linear optical phenomena of glasses (photonics-photo chromic-electro and magneto optics): a review. Solid State Phenomena. 207., Trans Tech Publications, Ltd., 1–35 (2013). https://doi.org/10.4028/www.scientific.net/ssp.207.1

    Article  Google Scholar 

  152. Seevakan, K., Manikandan, A., Devendran, P., Baykal, A., Alagesan, T.: Electrochemical and magneto-optical properties of cobalt molybdate nano-catalyst as high-performance supercapacitor. Ceram. Int. 44(15), 17735–17742 (2018). https://doi.org/10.1016/j.ceramint.2018.06.240

    Article  CAS  Google Scholar 

  153. Tsujioka, T., Shimizu, Y., Irie, M.: Crosstalk in photon-mode photochromic multi-wavelength recording. Jpn. Soc. Appl. Phys. 33(Part 1), 4A (1994). https://doi.org/10.1143/JJAP.33.1914

    Article  Google Scholar 

  154. Lee, H., Jeon, S., Friedman, B., et al.: Simultaneous imaging of magnetic field and temperature distributions by magneto optical indicator microscopy. Sci. Rep. 7, 43804 (2017). https://doi.org/10.1038/srep43804

    Article  Google Scholar 

  155. Wang, F., Wang, G., Jiang, C., et al.: Shape-anisotropic enhanced dam** in CoZr periodic arrays of nanohill structure. Nanoscale Res. Lett. 8, 284 (2013). https://doi.org/10.1186/1556-276X-8-284

    Article  CAS  Google Scholar 

  156. Sedó, J., Saiz-Poseu, J., Busqué, F., Ruiz-Molina, D.: Catechol-based biomimetic functional materials. Adv. Mater. 25(5), 653–701 (2013). https://doi.org/10.1002/adma.201202343

    Article  CAS  Google Scholar 

  157. Anuj, S., Kumar, P.M., Manoth, M., Sandhya, S., Kumar, S.V., Siddaramana, G.G., Raj, V.S., Narendra, K.: Preparation and characterization of biocompatible and water-dispersible Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Adv. Sci. Lett. 3(2), 161–167 (2010). https://doi.org/10.1166/asl.2010.1103

    Article  CAS  Google Scholar 

  158. Sun, H., Liu, S., Lin, W., et al.: Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014). https://doi.org/10.1038/ncomms4601

    Article  CAS  Google Scholar 

  159. Flämmich, M., Frischeisen, J., Setz, D.S., Michaelis, D., Krummacher, B.C., Schmidt, T.D., Brütting, W., Danz, N.: Oriented phosphorescent emitters boost OLED efficiency. Org. Electron. 12(10), 1663–1668 (2011). https://doi.org/10.1016/j.orgel.2011.06.011

    Article  CAS  Google Scholar 

  160. Marsella, M.J., Swager, T.M.: Designing conducting polymer-based sensors: selective ionochromic response in crown ether-containing polythiophenes. J. Am. Chem. Soc. 115(25), 12214–12215 (1993). https://doi.org/10.1021/ja00078a090

    Article  CAS  Google Scholar 

  161. Dong, Y., Lam, J.W.Y., Li, Z., et al.: Vapochromism of Hexaphenylsilole. J. Inorg. Organomet. Polym. 15, 287–291 (2005). https://doi.org/10.1007/s10904-005-5546-0

    Article  CAS  Google Scholar 

  162. Jordan, K.: Review of recent advances in radiochromic materials for 3D dosimetry. J. Phys.: Conf. Ser. 250, 012043 (2010). https://doi.org/10.1088/1742-6596/250/1/012043

    Article  Google Scholar 

  163. https://en.wikipedia.org/wiki/Sorptiochromism

  164. Cartwright, S.J.: Solvatochromic dyes detect the presence of homeopathic potencies. Homeopathy. 105(1), 55–65 (2016). https://doi.org/10.1016/j.homp.2015.08.002

    Article  Google Scholar 

  165. Zhang, C., Sun, L.-D., Yan, C.-H.: Noble metal plasmonic nanostructure related chromisms. Inorg. Chem. Front. 3, 203–217 (2016). https://doi.org/10.1039/C5QI00222B

    Article  CAS  Google Scholar 

  166. Peng, H., Leung, F.S.M., Wu, A.X., Dong, Y., Dong, Y., Yu, N.-T., Feng, X., Tang, B.Z.: Using Buckyballs to cut off light! Novel fullerene Materials with unique optical transmission characteristics. Chem. Mater. 16(23), 4790–4798 (2004). https://doi.org/10.1021/cm049680l

    Article  CAS  Google Scholar 

  167. Yu, L., George, Z.: Chen, Cryo-solvatochromism in ionic liquids. RSC Adv. 4, 40281–40285 (2014). https://doi.org/10.1039/C4RA08116A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, A. (2022). Chromogenic Materials. In: Advanced Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-80359-9_5

Download citation

Publish with us

Policies and ethics

Navigation