Shape-Programmable Magnetic Miniature Robots: A Critical Review

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

This chapter reviews the key advancements and challenges of shape-programmable magnetic robots that are in the micro- to millimeter length scales. A critical advantage of these miniature soft robots is that they have significant potential to attain mechanical functionalities beyond those of their traditional rigid counterparts. As a result, shape-programmable magnetic miniature robots have shown great potential in revolutionizing a broad range of applications pertaining to biomedicine, bioengineering, and lab-on-chip technology. To have a comprehensive discussion, various aspects of these robots, including their theory, programming and fabrication methods, untethered locomotion, and mechanical functionalities are analyzed. It is envisioned that this chapter will be able to provide critical analyses, which can inspire scientists and engineers to make shape-programmable magnetic miniature robots significantly more dexterous and functional in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D., & Wood, R. J. (2010). Proceedings National Academy of Sciences United States of America, 107, 12441.

    Google Scholar 

  2. Felton, S., Tolley, M., Demaine, E., Rus, D., & Wood, R. (2014). A method for building self-folding machines. Science, 345, 644..

    Google Scholar 

  3. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521, 467.

    Google Scholar 

  4. Rich, S. I., Wood, R. J., & Majidi, C. (2018). Untethered soft robotics. Nature Electronics, 1, 102.

    Google Scholar 

  5. Hines, L., Petersen, K., Lum, G. Z., & Sitti, M. (2017). Soft actuators for small-scale robotics. Advanced Materials, 29, 1603483

    Google Scholar 

  6. Lum, G. Z., Ye, Z., Dong, X., Marvi, H., Erin, O., Hu, W., & Sitti, M. (2016). Shape-programmable magnetic soft matter. Proceedings National Academy of Sciences United States of America, 113, E6007.

    Google Scholar 

  7. Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554, 81.

    Google Scholar 

  8. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., Lipson, H., & Jaeger, H. M. (2010). Universal robotic gripper based on the jamming of granular material. Proceedings National Academy of Sciences United States of America, 107, 18809.

    Google Scholar 

  9. Song, S., & Sitti, M. (2014). Soft grippers using micro-fibrillar adhesives for transfer printing. Advanced Materials, 26, 4901.

    Google Scholar 

  10. Song, S., Drotlef, D.-M., Majidi, C., & Sitti, M. (2017). Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proceedings National Academy of Sciences United States of America, 114, E4344.

    Google Scholar 

  11. Ng, C. S. X., Tan, M. W. M., Xu, C., Yang, Z., Lee, P. S., & Lum, G. Z. (2021). Locomotion of miniature soft robots. Advanced Materials. https://doi.org/10.1002/adma.202003558

  12. Xu, T., Zhang, J., Salehizadeh, M., Onaizah, O., & Diller, E. (2019). Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 4, eaav4494.

    Google Scholar 

  13. Hu, C., Pané, S., & Nelson, B. J. (2018). Soft micro- and nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems, 1, 53.

    Google Scholar 

  14. Ceylan, H., Giltinan, J., Kozielski, K., & Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab on a Chip, 17, 1705.

    Google Scholar 

  15. Diller, E., & Sitti, M. (2014). Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Advanced Functional Materials, 24, 4397.

    Google Scholar 

  16. Zhang, J., Onaizah, O., Middleton, K., You, L., & Diller, E. (2017). Reliable gras** of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place.IEEE Robotics and Automation Letters, 2, 835.

    Google Scholar 

  17. Gultepe, E., Randhawa, J. S., Kadam, S., Yamanaka, S., Selaru, F. M., Shin, E. J., Kalloo, A. N., & Gracias, D. H. (2013). Biopsy with thermally-responsive untethered microtools. Advanced Materials, 25, 514.

    Google Scholar 

  18. Wang, T., Hu, W., Ren, Z., & Sitti, M. (2020). Ultrasound-guided wireless tubular robotic anchoring system. IEEE Robotics and Automation Letters, 5, 4859.

    Google Scholar 

  19. Zhao, X., Kim, J., Cezar, C. A., Huebsch, N., Lee, K., Bouhadir, K., & Mooney, D. J. (2011).Active scaffolds for on-demand drug and cell delivery. Proceedings National Academy of Sciences United States of America, 108, 67.

    Google Scholar 

  20. Gu, H., Boehler, Q., Cui, H., Secchi, E., Savorana, G., Marco, C. D., Gervasoni, S., Peyron, Q., Huang, T.-Y., Pane, S., Hirt, A. M., Ahmed, D., & Nelson, B. J. (2020). Magnetic cilia carpets with programmable metachronal waves. Nature Communications, 11, 2637.

    Google Scholar 

  21. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55.

    Google Scholar 

  22. Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., & Diller, E. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103, 205.

    Google Scholar 

  23. Fusco, S., Sakar, M. S., Kennedy, S., Peters, C., Bottani, R., Starsich, F., Mao, A., Sotiriou, G. A., Pané, S., Pratsinis, S. E., Mooney, D., & Nelson, B. J. (2013). An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Advanced Materials, 26, 952.

    Google Scholar 

  24. Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., & Sitti, M. (2018). Mobile microrobots for active therapeutic delivery. Advances in Therapy, 2, 1800064.

    Google Scholar 

  25. Fusco, S., Huang, H. W., Peyer, K. E., Peters, C., Häberli, M., Ulbers, A., Spyrogianni, A., Pellicer, E., Sort, J., Pratsinis, S. E., & Nelson, B. J. (2015). Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion. ACS Applied Materials & Interfaces, 7, 6803.

    Google Scholar 

  26. Chung, S. E., Dong, X., & Sitti, M. (2015). Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab on a Chip, 15, 1667.

    Google Scholar 

  27. Ren, Z., Hu, W., Dong, X., & Sitti, M. (2019). Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 10, 2703.

    Google Scholar 

  28. Qiu, T., Lee, T.-C., Mark, A. G., Morozov, K. I., Münster, R., Mierka, O., Turek, S., Leshansky, A. M., & Fischer, P. (2014). Swimming by reciprocal motion at low Reynolds number. Nature Communications, 5, 1.

    Google Scholar 

  29. Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N., & Giesselmann, F. (2016). Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nature Materials, 15, 647.

    Google Scholar 

  30. Zeng, H., Wani, O. M., Wasylczyk, P., & Priimagi, A. (2017). Light-driven, caterpillar-inspired miniature inching robot. Macromolecular Rapid Communications, 39, 1700224.

    Google Scholar 

  31. Na, J. H., Evans, A. A., Bae, J., Chiappelli, M. C., Santangelo, C. D., Lang, R. J., Hull, T. C., & Hayward, R. C. (2015). Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced Materials, 27, 79.

    Google Scholar 

  32. Taccola, S., Greco, F., Sinibaldi, E., Mondini, A., Mazzolai, B., & Mattoli, V. (2015). Toward a new generation of electrically controllable hygromorphic soft actuators. Advanced Materials, 27, 1668.

    Google Scholar 

  33. Mourran, A., Zhang, H., Vinokur, R., & Möller, M. (2017). Soft microrobots employing nonequilibrium actuation via plasmonic heating. Advanced Materials, 29, 1604825.

    Google Scholar 

  34. Leong, T. G., Randall, C. L., Benson, B. R., Bassik, N., Stern, G. M., & Gracias, D. H. (2009). Tetherless thermobiochemically actuated microgrippers. Proceedings National Academy of Sciences United States of America, 106, 703.

    Google Scholar 

  35. Jiang, S., Liu, F., Lerch, A., Ionov, L., & Agarwal, S. (2015). Unusual and superfast temperature-triggered actuators. Advanced Materials, 27, 4865.

    Google Scholar 

  36. Lendlein, A., & Langer, R. (2002). Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296, 1673.

    Google Scholar 

  37. Kwon, G. H., Park, J. Y., Kim, J. Y., Frisk, M. L., Beebe, D. J., & Lee, S. H. (2008). Biomimetic soft multifunctional miniature aquabots. Small, 4, 2148.

    Google Scholar 

  38. Yang, C., Wang, W., Yao, C., **e, R., Ju, X.-J., Liu, Z., & Chu, L.-Y. (2015). Hydrogel walkers with electro-driven motility for cargo transport. Scientific Reports, 5, 13622.

    Google Scholar 

  39. Gupta, B., Goudeau, B., Garrigue, P., & Kuhn, A. (2018). Bipolar conducting polymer crawlers based on triple symmetry breaking. Advanced Functional Materials, 28, 1705825.

    Google Scholar 

  40. Lee, H., **a, C., & Fang, N. X. (2010). First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 6, 4342.

    Google Scholar 

  41. Maeda, S., Hara, Y., Sakai, T., Yoshida, R., & Hashimoto, S. (2007). Self-walking gel. Advanced Materials, 19, 3480.

    Google Scholar 

  42. Stoychev, G., Zakharchenko, S., Turcaud, S., Dunlop, J. W. C., & Ionov, L. (2012). Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano, 6, 3925.

    Google Scholar 

  43. Zhao, Q., Dunlop, J. W. C., Qiu, X., Huang, F., Zhang, Z., Heyda, J., Dzubiella, J., Antonietti,M., & Yuan, J. (2014). An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nature Communications, 5, 4293.

    Google Scholar 

  44. Paek, J., Cho, I., & Kim, J. (2015). Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Scientific Reports, 5, 10768.

    Google Scholar 

  45. Gorissen, B., de Volder, M., & Reynaerts, D. (2015). Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion. Lab on a Chip, 15, 4348.

    Google Scholar 

  46. Gorissen, B., Chishiro, T., Shimomura, S., Reynaerts, D., Volder, M. D., & Konishi, S. (2014). Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sensors and Actuators A: Physical, 216, 426.

    Google Scholar 

  47. Sitti, M., & Wiersma, D. S. (2020). Pros and cons: Magnetic versus optical microrobots. Advanced Materials, 32, 1906766.

    Google Scholar 

  48. Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26, 1006.

    Google Scholar 

  49. Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., & Sitti, M. (2016). Six-degree-of-freedom magnetic actuation for wireless microrobotics. International Journal of Robotics Research, 35, 114.

    Google Scholar 

  50. Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259.

    Google Scholar 

  51. Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3, 113.

    Google Scholar 

  52. Shen, Z., Chen, F., Zhu, X., Yong, K.-T., & Gu, G. (2020). Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B. https://doi.org/10.1039/D0TB01585G

  53. Kuang, X., Roach, D., Hamel, C., Yu, K., & Qi, J. (2020). Materials, design and fabrication of shape programmable polymers. Multifunctional Materials. https://doi.org/10.1088/2399-7532/aba1d9

  54. Yang, Z., & Zhang, L. (2020). Magnetic actuation systems for miniature robots: A review. Advanced Intelligent Systems, 2, 2000082.

    Google Scholar 

  55. Chow, T. L. (2006). Introduction to electromagnetic theory: A modern perspective. Jones & Bartlett Learning.

    Google Scholar 

  56. Kankanala, S. V., & Triantafyllidis, N. (2004). On finitely strained magnetorheological elastomers. Journal of the Mechanics and Physics of Solids, 52, 2869.

    Google Scholar 

  57. Zhao, R., Kim, Y., Chester, S. A., Sharma, P., & Zhao, X. (2019). Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids, 124, 244.

    Google Scholar 

  58. Danas, K., Kankanala, S. V., & Triantafyllidis, N. (2012). Experiments and modeling of iron-particle-filled magnetorheological elastomers. Journal of the Mechanics and Physics of Solids, 60, 120.

    Google Scholar 

  59. Ogden, R. W. (1972). Large deformation isotropic elasticity – On the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A, 326, 565.

    Google Scholar 

  60. Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11, 582.

    Google Scholar 

  61. Dorfmann, A., & Ogden, R. W. (2003). Magnetoelastic modelling of elastomers. European Journal of Mechanics - A/Solids, 22, 497.

    Google Scholar 

  62. Diller, E., Zhuang, J., Lum, G. Z., Edwards, M. R., & Sitti, M. (2014). Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Applied Physics Letters, 104, 174101.

    Google Scholar 

  63. Kim, Y., Parada, G. A., Liu, S., & Zhao, X. (2019). Ferromagnetic soft continuum robots. Science Robotics, 4, eaax7329.

    Google Scholar 

  64. Wang, L., Kim, Y., Guo, C. F., & Zhao, X. (2020). Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids, 142, 104045.

    Google Scholar 

  65. Kim, J., Chung, S. E., Choi, S.-E., Lee, H., Kim, J., & Kwon, S. (2011). Programming magnetic anisotropy in polymeric microactuators. Nature Materials, 10, 747.

    Google Scholar 

  66. Garstecki, P., Tierno, P., Weibel, D. B., Sagués, F., & Whitesides, G. M. (2009). Propulsion of flexible polymer structures in a rotating magnetic field. Journal of Physics Condensed Matter, 21, 204110.

    Google Scholar 

  67. Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437, 862.

    Google Scholar 

  68. Jang, B., Gutman, E., Stucki, N., Seitz, B. F., Wendel-García, P. D., Newton, T., Pokki, J., Ergeneman, O., Pané, S., Or, Y., & Nelson, B. J. (2015). Undulatory locomotion of magnetic multilink nanoswimmers. Nano Letters, 15, 4829.

    Google Scholar 

  69. Khoo, M., & Liu, C. (2001). Micro magnetic silicone elastomer membrane actuator. Sensors and Actuators A: Physical, 89, 259.

    Google Scholar 

  70. Olsson, R. T., Samir, M. A. S. A., Salazar-Alvarez, G., Belova, L., Ström, V., Berglund, L. A., Ikkala, O., Nogués, J., & Gedde, U. W. (2010). Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnology, 5, 584.

    Google Scholar 

  71. Zrínyi, M., Barsi, L., & Büki, A. (1997). Ferrogel: A new magneto-controlled elastic medium. Polymer Gels and Networks, 5, 415.

    Google Scholar 

  72. Zrínyi, M., Szabó, D., & Kilian, H.-G. (1998). Kinetics of the shape change of magnetic field sensitive polymer gels. Polymer Gels and Networks, 6, 441.

    Google Scholar 

  73. Fuhrer, R., Schumacher, C. M., Zeltner, M., & Stark, W. J. (2013). Soft iron/silicon composite tubes for magnetic peristaltic pum**: Frequency-dependent pressure and volume flow. Advanced Functional Materials, 23, 3845.

    Google Scholar 

  74. Nguyen, V. Q., Ahmed, A. S., & Ramanujan, R. V. (2012). Morphing soft magnetic composites. Advanced Materials, 24, 4041.

    Google Scholar 

  75. Mitsumata, T., Horikoshi, Y., & Negami, K. (2008). High-power actuators made of two-phase magnetic gels. Japanese Journal of Applied Physics, 47, 7257.

    Google Scholar 

  76. Zhang, J., & Diller, E. (2015). Millimeter-scale magnetic swimmers using elastomeric undulations. Presented at IEEE/RSJ international conference on intelligent robots and systems, Hamburg, Germany, September, 2015.

    Google Scholar 

  77. Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society A, 209, 447.

    Google Scholar 

  78. Wu, S., Hamel, C. M., Ze, Q., Yang, F., Qi, H. J., & Zhao, R. (2020). Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Advanced Intelligent Systems, 2, 2000060.

    Google Scholar 

  79. Qi, S., Guo, H., Fu, J., **e, Y., Zhu, M., & Yu, M. (2020). 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Composites Science and Technology, 188, 107973.

    Google Scholar 

  80. Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I., & Sitti, M. (2020). Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6, eabc6414.

    Google Scholar 

  81. Cui, J., Huang, T.-Y., Luo, Z., Testa, P., Gu, H., Chen, X.-Z., Nelson, B. J., & Heyderman, L. J. (2019). Nanomagnetic encoding of shape-morphing micromachines. Nature, 575, 164.

    Google Scholar 

  82. Kim, Y., Yuk, H., Zhao, R., Chester, S. A., & Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558, 274.

    Google Scholar 

  83. Bertotti, G. (1998). Hysteresis in magnetism: For physicists, materials scientists, and engineers. Academic.

    Google Scholar 

  84. Ginder, J. M., Nichols, M. E., Elie, L. D., & Tardiff, J. L. (1999). Magnetorheological elastomers: Properties and applications. Smart Materials and Structures, 3675, 131.

    Google Scholar 

  85. Lum, G.Z., Pham, M.T., Teo, T.J., Yang, G, Yeo, S.H., & Sitti, M. (2017). An XY θz flexure mechanism with optimal stiffness properties. Presented at IEEE international conference on advanced intelligent mechatronics, Munich, Germany, July, 2017.

    Google Scholar 

  86. Lum, G.Z., Teo, T.J., Yang, G., Yeo, S.H., & Sitti, M. (2013). A hybrid topological and structural optimization method to design a 3-DOF planar motion compliant mechanism. Presented at IEEE/ASME international conference on advanced intelligent mechatronics, Wollongong, NSW, Australia, July, 2013.

    Google Scholar 

  87. Lum, G. Z., Teo, T. J., Yeo, S. H., Yang, G., & Sitti, M. (2015). Structural optimization for flexure-based parallel mechanisms – Towards achieving optimal dynamic and stiffness properties. Precision Engineering, 42, 195.

    Google Scholar 

  88. Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., & Sitti, M. (2015). Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of- freedom flexure-based parallel mechanism. Precision Engineering, 39, 125.

    Google Scholar 

  89. Pham, M. T., Teo, T. J., & Yeo, S. H. (2017). Synthesis of multiple degrees-of-freedom spatial-motion compliant parallel mechanisms with desired stiffness and dynamics characteristics. Precision Engineering, 47, 131.

    Google Scholar 

  90. Huang, H.-W., Sakar, M. S., Petruska, A. J., Pané, S., & Nelson, B. J. (2016). Soft micromachines with programmable motility and morphology. Nature Communications, 7, 1.

    Google Scholar 

  91. Ma, C., Wu, S., Ze, Q., Kuang, X., Zhang, R., Qi, H. J., & Zhao, R. (2021). Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.0c13863

  92. Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., Zhang, L., Dong, L., Kaliakatsos, I. K., & Nelson, B. J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 1434.

    Google Scholar 

  93. Ge, F., Yang, R., Tong, X., Camerel, F., & Zhao, Y. (2018). A multifunctional dye-doped liquid crystal polymer actuator: Light-guided transportation, turning in locomotion, and autonomous motion. Angewandte Chemie, 130, 11932.

    Google Scholar 

  94. Lu, H., Zhang, M., Yang, Y., Huang, Q., Fukuda, T., Wang, Z., & Shen, Y. (2018). A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 9, 3944.

    Google Scholar 

  95. Zhao, J., Zhang, X., Chen, N., & Pan, Q. (2012). Why superhydrophobicity is crucial for a water-jum** microrobot? Experimental and theoretical investigations. ACS Applied Materials & Interfaces, 4, 3706.

    Google Scholar 

  96. Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3.

    Google Scholar 

  97. Lighthill, J. (1976). Flagellar hydrodynamics. SIAM Review, 18, 161.

    Google Scholar 

  98. Brust, M., Schaefer, C., Pan, L., Garcia, M., Arratia, P., & Wagner, C. (2013). Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Physical Review Letters, 110, 078305.

    Google Scholar 

  99. Baskurt, O. K., & Meiselman, H. J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis, 29, 435.

    Google Scholar 

  100. Lai, S. K., Wang, Y.-Y., Wirtz, D., & Hanes, J. (2009). Micro- and macrorheology of mucus. Advanced Drug Delivery Reviews, 61, 86.

    Google Scholar 

  101. Curt, J. R. N., & Pringle, R. (1969). Viscosity of gastric mucus in duodenal ulceration. Gut, 10, 931.

    Google Scholar 

  102. Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61, 75.

    Google Scholar 

  103. Brackenbury, J. (1997). Caterpillar kinematics. Nature, 390, 453.

    Google Scholar 

  104. Jäger, P. (2014). Cebrennus Simon, 1880 (Araneae: Sparassidae): A revisionary up-date with the description of four new species and an updated identification key for all species. Zootaxa, 3790, 319.

    Google Scholar 

  105. Armour, R. H., & Vincent, J. F. V. (2006). Rolling in nature and robotics: A review. Journal of Bionic Engineering, 3, 195.

    Google Scholar 

  106. Miyashita, S., Guitron, S., Yoshida, K., Li, S., Damian, D.D., & Rus, D. (2016). Ingestible, controllable, and degradable origami robot for patching stomach wounds. Presented at IEEE international conference on robotics and automation, Stockholm, Sweden, May, 2016.

    Google Scholar 

  107. Munoz, F., Alici, G., & Li, W. (2014). A review of drug delivery systems for capsule endoscopy. Advanced Drug Delivery Reviews, 71, 77.

    Google Scholar 

  108. Yim, S., Goyal, K., & Sitti, M. (2013). Magnetically actuated soft capsule with the multimodal drug release function. IEEE/ASME Transactions on Mechatronics, 18, 1413.

    Google Scholar 

  109. Kim, C., Kim, H., Park, H., & Lee, K. Y. (2019). Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydrate Polymers, 223, 115045.

    Google Scholar 

  110. Tasoglu, S., Diller, E., Guven, S., Sitti, M., & Demirci, U. (2014). Untethered micro-robotic coding of three-dimensional material composition. Nature Communications, 5, 1.

    Google Scholar 

  111. Tasoglu, S., Kavaz, D., Gurkan, U. A., Guven, S., Chen, P., Zheng, R., & Demirci, U. (2013). Paramagnetic levitational assembly of hydrogels. Advanced Materials, 25, 1137.

    Google Scholar 

  112. Floyd, S., Pawashe, C., & Sitti, M. (2009). Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Transactions on Robotics, 25, 1332.

    Google Scholar 

  113. Pawashe, C., Floyd, S., Diller, E., & Sitti, M. (2012). Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Transactions on Robotics, 28, 467.

    Google Scholar 

  114. Giltinan, J., Diller, E., & Sitti, M. (2016). Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab on a Chip, 22, 4445.

    Google Scholar 

  115. Zhang, J., Salehizadeh, M., & Diller, E. (2018). Parallel pick and place using two independent untethered mobile magnetic microgrippers. Presented at IEEE interntaional conference on robotics and automation, Brisbane, QLD, Australia, May, 2018.

    Google Scholar 

  116. Khaderi, S. N., Craus, C. B., Hussong, J., Schorr, N., Belardi, J., Westerweel, J., Prucker, O., Rühe, J., den Toonder, J. M. J., & Onck, P. R. (2011). Magnetically-actuated artificial cilia for microfluidic propulsion. Lab on a Chip, 11, 2002.

    Google Scholar 

  117. Hanasoge, S., Hesketh, P. J., & Alexeev, A. (2018). Microfluidic pum** using artificial magnetic cilia. Microsystems & Nanoengineering, 4, 11.

    Google Scholar 

  118. Shields, A. R., Fiser, B. L., Evans, B. A., Falvo, M. R., Washburn, S., & Superfine, R. (2010). Biomimetic cilia arrays generate simultaneous pum** and mixing regimes. Proceedings National Academy of Sciences United States of America, 107, 15670.

    Google Scholar 

  119. Sitti, M. (2019). Robotic collectives inspired by biological cells. Nature, 567, 314.

    Google Scholar 

  120. Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., & Sitti, M. (2018). Soft erythrocyte-based bacterial microswimmers for cargo delivery. Science Robotics, 3, eaar4423.

    Google Scholar 

  121. Wang, B., Chan, K. F., Yu, J., Wang, Q., Yang, L., Chiu, P. W. Y., & Zhang, L. (2018). Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Advanced Functional Materials, 28, 1705701.

    Google Scholar 

  122. Servant, A., Qiu, F., Mazza, M., Kostarelos, K., & Nelson, B. J. (2015). Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Advanced Materials, 27, 2981.

    Google Scholar 

  123. Yigit, B., Alapan, Y., & Sitti, M. (2019). Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms. Advancement of Science, 6, 1801837.

    Google Scholar 

  124. Tognarelli, S., Castelli, V., Ciuti, G., Natali, C. D., Sinibaldi, E., Dario, P., & Menciassi, A. (2012). Magnetic propulsion and ultrasound tracking of endovascular devices. Journal of Robotic Surgery, 6, 5.

    Google Scholar 

  125. Singh, A. V., Ansari, M. H. D., Dayan, C. B., Giltinan, J., Wang, S., Yu, Y., Kishore, V., Laux, P., Luch, A., & Sitti, M. (2019). Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 219, 119394.

    Google Scholar 

Download references

Acknowledgments

G.Z.L. was funded by the startup grant awarded by Nanyang Technological University. C.S.X.N. and C.X. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Zhan Lum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, C.S.X., Xu, C., Yang, Z., Lum, G.Z. (2022). Shape-Programmable Magnetic Miniature Robots: A Critical Review. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation