MOS Capacitors, MOS Transistors, and Charge-Transfer Devices

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

The chapter has two main parts: the first one addresses the functioning of the MOS capacitor and MOS transistor, considering the case of a p-type substrate. The description of the MOS capacitor is extended to that of the photocapacitor, to be later applied to the case of solid-state imagers. The transistor structure considered in this chapter is simple (i.e., planar); the analysis, however, is carried out in detail, leading to models for the drain current applicable to different functioning regimes of the channel (depletion, weak and strong inversion, saturation). From this, the simpler linear-parabolic model is derived, for both the p- and n-type substrates, necessary to set up the elementary theory of the CMOS inverter. A brief analysis of the scaling rules for MOSFETs is carried out as well.

The second part illustrates the functioning of two important types of charge-transfer devices, CCD and CID, along with some applications, of which the most important are in the field of optical sensing. The architecture of imagers using CCD or CID is illustrated, and different aspects of their performance are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 298.53
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 385.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sze, S.M.: Physics of Semiconductor Devices. Wiley, NewYork (1981)

    Google Scholar 

  2. Rudan, M.: Physics of Semiconductor Devices, 2nd edn. Springer, New York (2018)

    Book  Google Scholar 

  3. Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits, 2nd edn. Wiley, New York (1986)

    Google Scholar 

  4. Lilienfeld, J.E.: Method and apparatus for controlling electric currents. U.S. Patent 1,745,175 (USPTO, Alexandria, VA 1930, filed 1926)

    Google Scholar 

  5. Lilienfeld, J.E.: Amplifier for electric currents. U.S. Patent 1,877,140 (USPTO, Alexandria, VA 1932, filed 1928)

    Google Scholar 

  6. Lilienfeld, J.E.: Device for controlling electric currents. U.S. Patent 1,900,018 (USPTO, Alexandria, VA 1933, filed 1928)

    Google Scholar 

  7. Heil, O.: Improvements in or relating to electrical amplifiers and other control arrangements and devices. British Patent 439,457 (Patent Office, London 1935, filed 1935)

    Google Scholar 

  8. Shockley, W., Pearson, G.L.: Modulation of conductance of thin films of semiconductor by surface charges. Phys. Rev. 74, 232 (1948)

    Article  Google Scholar 

  9. Ng, K.K.: Complete Guide to Semiconductor Devices. Electrical and Computer Engineering McGraw-Hill, New York (1995)

    Google Scholar 

  10. Ross, I.M.: Semiconductive translating device. U.S. Patent 2,791,760 (USPTO, Alexandria, VA 1957, filed 1955)

    Google Scholar 

  11. Atalla, M.M.: Semiconductor devices having dielectric coatings. U.S. Patent 3,206,670 (USPTO, Alexandria, VA 1965, filed 1960)

    Google Scholar 

  12. Kahng, D., Atalla, M.M.: Silicon-silicon dioxide field induced surface devices. In: IRE-AIEE Solid-State Device Res. Conf. Carnegie Inst. of Tech., Pittsburgh (1960)

    Google Scholar 

  13. Sah, C.-T.: Evolution of the MOS transistor—From conception to VLSI. Proc. IEEE 76, 1280 (1988)

    Article  Google Scholar 

  14. Hofstein, S.R., Heiman, F.P.: The silicon insulated-gate field-effect transistor. Proc. IEEE 51, 1190 (1963)

    Article  Google Scholar 

  15. Ihantola, H.K.J., Moll, J.L.: Design theory of a surface field-effect transistor. Solid-State Electron. 7, 423 (1964)

    Article  Google Scholar 

  16. Sha, C.T.: Characteristics of the metal-oxide-semiconductor transistor. IEEE Trans. El. Dev. ED-11, 324 (1964)

    Google Scholar 

  17. Godoy, A., López-Villanueva, J.A., Jiménez-Tejada, J.A., Palma, A., Gámiz, F.: A simple threshold swing model for short channel MOSFETs. Solid-State Electron. 45, 391–397 (2001)

    Article  Google Scholar 

  18. Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to do** and field. Proc. IEEE 55(12), 2192–2193 (1967)

    Article  Google Scholar 

  19. Sabnis, A.G., Clemens, J.T.: Characterization of the electron mobility in the inverted 〈100〉 silicon surface. In: Thomas, R.E. (ed.) Proc. International Electron Devices Meeting (IEDM) (IEEE, Washington, 1979), pp. 18–21

    Google Scholar 

  20. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of the inversion-layer mobility in Si MOSFETs—part I. Effects of substrate impurity concentration. IEEE Trans. El. Dev. 41(12), 2357–2362 (1994)

    Article  Google Scholar 

  21. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of the inversion-layer mobility in Si MOSFETs—part II. Effects of surface orientation. IEEE Trans. El. Dev. 41(12), 2363–2368 (1994)

    Article  Google Scholar 

  22. Séquin, C.H., Tompsett, M.F.: Charge Transfer Devices. Academic Press, London (1975)

    Google Scholar 

  23. Fife, K., El Gamal, A., Wong, H.-P.: A 0.5 μm pixel frame-transfer CCD image sensor in 110 nm CMOS. In: Misra, V. (ed.) Proc. International Electron Devices Meeting (IEDM) (IEEE, Washington, DC 2007), pp. 1003–1006

    Google Scholar 

  24. Joyce, W.B., Bertram, W.J.: Linearized dispersion relation and Green’s function for discrete charge transfer devices with incomplete transfer. Bell Syst. Tech. J. 50, 1741–1759 (1971)

    Article  MathSciNet  Google Scholar 

  25. Bracewell, R.: The Fourier Transform and Its Application. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  26. Michon, G.J., Burke, H.K., Brown, D.M.: Recent developments in CID imaging. In: B. Rubin, Smokler, M.I. (ed.) Symp. on CCD Tech. for Scientific Imaging Applications (JPL & Caltech, Pasadena, CA 1975), pp. 106–115

    Google Scholar 

  27. Fossum, E.R.: Active pixel sensors: are CCD’s dinosaurs? In: Blouke, M.M. (ed.) Proc. of the SPIE’s Symposium on Electronic Imaging—Science and Technology (SPIE, 1993), pp. 2–14

    Google Scholar 

  28. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, New York (1975)

    Google Scholar 

  29. Reibel, Y., Jung, M., Bouhifd, M., Cunin, B., Draman, C.: CCD or CMOS camera noise characterisation. Eur. Phys. J. Appl. Phys. 21(1), 75–80 (2003)

    Article  Google Scholar 

  30. Tompsett, M.F.: Surface potential equilibration method of setting charge in charge coupled devices. IEEE Trans. El. Dev. 22(6), 305–309 (1975)

    Article  Google Scholar 

  31. Wen, D.D.: Design and operation of a floating gate amplifier. IEEE J. of Solid St. Circ. 9, 410–414 (1974)

    Article  Google Scholar 

  32. Thornber, K.K.: Theory of noise in charge-transfer devices. Bell Syst. Tech. J. 53, 1211–1262 (1974)

    Article  Google Scholar 

  33. Thornber, K.K., Tompsett, M.F.: Spectral density of noise generated in charge transfer devices. IEEE Trans. El. Dev. 20, 456 (1973)

    Article  Google Scholar 

  34. Mohsen, A.M., Tompsett, M.F.: The effects of bulk traps on the performance of bulk channel charge coupled devices. IEEE Trans. El. Dev. 21, 701–712 (1974)

    Article  Google Scholar 

  35. Wen, D.D., Early, J.M., Kim, C.-K., Amelio, G.F.: A distributed floating-gate amplifier in charge-coupled devices. In: Sobol, H., Pricer, W.D. (eds.) Int. Solid-State Circuits Conf. (ISSCC), Digest of Tech. Papers (IEEE, Philadelphia, PA 1975), pp. 24–25

    Google Scholar 

  36. Séquin, C.H., Mohsen, A.M.: Linearity of electrical charge injection into charge-coupled devices. IEEE J. Solid St. Circ. 10(2), 81–91 (1975)

    Article  Google Scholar 

  37. Baiko, D.A., Swab, J.M.: Linearity of active pixel charge injection devices. IEEE Trans. El. Devices 52(8), 1923–1926 (2005)

    Article  Google Scholar 

  38. Crowell, M.H., Labuda, E.F.: The silicon diode array camera tube. Bell Syst. Tech. J. 48, 1481 (1969)

    Article  Google Scholar 

  39. Holland, S.E., Groom, D.E., Palaio, N.P., Stover, R.J., Wei, M.: Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon. IEEE Trans. El. Dev. 50(1), 225–238 (2003)

    Article  Google Scholar 

  40. Abe, H.: Device technologies for high quality and smaller pixel in CCD and CMOS image sensors. In: Welser, J. (ed.) Proc. International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA 2004), pp. 989–992

    Google Scholar 

  41. Prigozhin, G., Burke, B., Bautz, M., Kissel, S., LaMarr, B.: CCD charge injection structure at very small signal levels. IEEE Trans. El. Dev. 55(8), 2111–2120 (2008)

    Article  Google Scholar 

  42. Marcelot, O., Estribeau, M., Goiffon, V., Martin-Gonthier, P., Corbière, F., Molina, R., Rolando, S., Magnan, P.: Study of CCD transport on CMOS imaging technology: comparison between SCCD and BCCD, and ramp effect on the CTI. IEEE Trans. El. Dev. 61(3), 844–849 (2014)

    Article  Google Scholar 

  43. Etoh, T.G., Dao, V.T.S., Shimonomura, K., Charbon, E., Zhang, C., Kamakura, Y., Matsuoka, T.: Toward 1 Gfps: evolution of ultra-high-speed image sensors—ISIS, BSI, multi-collection gates, and 3D-stacking. In: Wang, H.C.-H. (ed.) Proc. International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA 2014), pp. 10.3.1–10.3.4

    Google Scholar 

  44. Wang, S., Brolly, R., Carpenter, D.A., DeJager, A., Doran, J.E., Fabinski, R.P., Frank, T., Kather, R., Kosman, S., Lum, A., McCarten, J., Meisenzahl, E.J., Mersich, P., Stevens, E., Summa, J., Tivarus, C., Tobey, B.: 43- and 50-Mp High-performance interline CCD image sensors. IEEE Trans. El. Dev. 66(3), 1329–1337 (2019)

    Article  Google Scholar 

  45. Haro, M.S., Moroni, G.F., Tiffenberg, J.: Studies on small charge packet transport in high-resistivity fully depleted CCDs. IEEE Trans. El. Dev. 67(3), 1–8 (2020)

    Google Scholar 

  46. Baccarani, G., Rudan, M., Spadini, G.: Analytical IGFET model including drift and diffusion currents. Solid-State Electron Devices 2, 62–68 (1978)

    Article  Google Scholar 

  47. Baccarani, G., Wordeman, M.R., Dennard, R.H.: Generalized scaling theory and its application to a 1/4 micrometer MOSFET design. IEEE Trans. El. Dev. 31(4), 452–462 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Rudan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudan, M., Reggiani, S., Baccarani, G. (2023). MOS Capacitors, MOS Transistors, and Charge-Transfer Devices. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation