Printed Flexible Thin-Film Transistors

  • Chapter
  • First Online:
Advanced Materials for Printed Flexible Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 317))

Abstract

The ability to realize flexible thin-film transistors (TFTs) which are key driving/switching components of wearable/stretchable electronics, offers much freedom on the target substrates. Therefore, a variety of functional materials focusing on semiconductors have been extensively explored for realizing competitive flexible TFTs, including traditional silicon, organics, and inorganics (such as oxides, carbon nanotubes (CNTs), graphene, and other emerging 2D materials). In particular, additive printing has great advantages for realizing stack-structured TFTs consisting of conductive, insulation, and semiconductor layers on flexible substrates with a low thermal budget, even below 200 °C when organic or nanoparticle-type functional inks are used. For obtaining high-performance printed TFTs, there is lots of research focused on printable semiconductor/dielectric/electrode materials, surface and interface properties, as well as printing techniques. With the in-depth research on materials, device structure, and manufacturing processes, TFTs gradually realize the fabrication on flexible substrates with printing techniques. This chapter will give a brief review on printed flexible thin-film transistors, including types of transistors, structure and operation of thin-film transistors, printing techniques and printed components of thin-film transistors, printed organic thin-film transistors, and printed inorganic thin-film transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65

    Article  CAS  Google Scholar 

  • Aspencore (2018) Metal-oxide-semiconductor field effect transistor (MOSFET). https://www.electronics-tutorials.ws/transistor/tran_6.html. Accessed 18 Dec 2018

  • Baeg K-J et al (2012) Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. ACS Appl Mater Interfaces 4:6176–6184

    Article  CAS  Google Scholar 

  • Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194

    Article  CAS  Google Scholar 

  • Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H (2011) Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. Nat Mater 10:45–50

    Article  CAS  Google Scholar 

  • Bittle EG, Basham JI, Jackson TN, Jurchescu OD, Gundlach DJ (2016) Mobility overestimation due to gated contacts in organic field-effect transistors. Nat Commun 7:10908

    Article  CAS  Google Scholar 

  • Boudinet D et al (2011) Influence of substrate surface chemistry on the performance of top-gate organic thin-film transistors. J Am Chem Soc 133:9968–9971

    Article  CAS  Google Scholar 

  • Bretos I, Jiménez R, Ricote J, Calzada ML (2018) Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem Soc Rev 47:291–308

    Article  CAS  Google Scholar 

  • Bucella SG et al (2015) Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat Commun 6:8394

    Article  CAS  Google Scholar 

  • Caironi M, Noh Y, Sirringhaus H (2011) Frequency operation of low-voltage, solution-processed organic field-effect transistors. Semicond Sci Technol 26:034006

    Article  CAS  Google Scholar 

  • Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C (2017a) Top-contact self-aligned printing for high-performance carbon nanotube thin-film transistors with sub-micron channel length. ACS Nano 11:2008–2014

    Article  CAS  Google Scholar 

  • Cao C, Andrews JB, Franklin AD (2017b) Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater 3:1700057

    Article  CAS  Google Scholar 

  • Chandra B, Park H, Maarouf A, Martyna GJ, Tulevski GS (2011) Carbon nanotube thin film transistors on flexible substrates. Appl Phys Lett 99(7):072110

    Article  CAS  Google Scholar 

  • Chang CW, Hon MH, Leu IC (2012) Patterns of solution processed graphene oxide produced by a transfer printing method. J Electrochem Soc 159:605–609

    Article  CAS  Google Scholar 

  • Chen P, Fu Y, Aminirad R et al (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11(12):5301–5308

    Article  CAS  Google Scholar 

  • Cheng IC (2017) Flexible and printed electronics. In: Lu D, Wong C (eds) Materials for advanced packaging. Springer, Cham

    Google Scholar 

  • Choi H-H, Lin L-Y, Cheng C-C, Chang C-H (2015) Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol 4(4):3044–3051

    Article  CAS  Google Scholar 

  • Correia APP, Cândido Barquinha PM, Goes JCP (2016) A second-order ΣΔ ADC using sputtered IGZO TFTs. Springer, New York

    Book  Google Scholar 

  • Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    Article  CAS  Google Scholar 

  • Deng W, Zhang X, Gong C, Zhang Q, **ng Y, Wu Y, Zhang X, Jie J (2014) Aligned nanowire arrays on thin flexible substrates for organic transistors with high bending stability. J Mater Chem C 2:1314–1320

    Article  CAS  Google Scholar 

  • Deng W, Zhang X, Pan H, Shang Q, Wang J, Zhang X, Zhang X, Jie J (2015) A high-yield two-step transfer printing method for large-scale fabrication of organic single-crystal devices on arbitrary substrates. Sci Rep 4:5358

    Article  CAS  Google Scholar 

  • Deng P, Ren S, Cao K, Li H, Zhang QA (2016) Comparative study of bithiophene and thienothiophene based polymers for organic field-effect transistor applications. J Mater Sci Mater Electron 27:9143–9151

    Article  CAS  Google Scholar 

  • Di CA, Liu Y, Yu G, Zhu D (2009) Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res 42:1573–1583

    Article  CAS  Google Scholar 

  • Faber H, Das S, Lin YH, Pliatsikas N, Zhao K, Kehagias T, Dimitrakopulos G, Amassian A, Patsalas PA, Anthopoulos TD (2017) Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci Adv 3:e1602640

    Article  Google Scholar 

  • Facchetti A, Marks TJ (eds) (2010) Transparent electronics. Wiley, Chichester

    Google Scholar 

  • Feng L, Jiang C, Ma H, Guo X, Nathan A (2016) All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. Org Electron 38:186–192

    Article  CAS  Google Scholar 

  • Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9(10):768–779

    Article  CAS  Google Scholar 

  • Fischer T, Ruehling J, Wetzold N, Zillger T, Weissbach T, Goeschel T, Wuerfel M, Huebler A, Kroll L (2018) Roll-to-roll printed carbon nanotubes on textile substrates as a heating layer in fiber-reinforced epoxy composites. J Appl Polym Sci 135:45950

    Article  CAS  Google Scholar 

  • Franklin AD (2015) Nanomaterials in transistors: from high performance to thin-film applications. Science 349:2750

    Article  CAS  Google Scholar 

  • Fukuda K et al (2015) Printed organic transistors with uniform electrical performance and their application to amplifiers in biosensors. Adv Electron Mater 1:1400052

    Article  CAS  Google Scholar 

  • Gao Y, Zhang J, Li X (2015) Solution-processed zirconium oxide gate insulators for top gate and low operating voltage thin-film transistor. J Disp Technol 11:764–767

    Article  CAS  Google Scholar 

  • Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  Google Scholar 

  • Grouchko M, Kamyshny A, Mihailescu CF, Anghel DF, Magdassi S (2011) Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5:3354–3359

    Article  CAS  Google Scholar 

  • Guerin M et al (2011) High-gain fully printed organic complementary circuits on flexible plastic foils. IEEE Trans Electron Devices 58:3587–3593

    Article  CAS  Google Scholar 

  • Gundlach D et al (2008) Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat Mater 7:216–221

    Article  CAS  Google Scholar 

  • Guo X, Xu Y, Ogier S et al (2017) Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices 64(5):1–16

    Google Scholar 

  • Han SY, Herman GS, Chang CH (2011) Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J Am Chem Soc 133:5166–5169

    Article  CAS  Google Scholar 

  • Heo JS, Jo JW, Kang J, Jeong CY, Jeong HY, Kim SK, Kim K, Kwon HI, Kim J, Kim YH, Kim MG, Park SK (2016) Water-mediated photochemical treatments for low-temperature passivation of metal-oxide thin-film transistors. ACS Appl Mater Interfaces 8:10403–10412

    Article  CAS  Google Scholar 

  • Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl PhysLett 82(5):733–735

    CAS  Google Scholar 

  • Hong YK, Liu N, Yin D, Hong S, Kim DH, Kim S, Cho W, Yoon Y (2017) Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. J Phys D Appl Phys 50:164001. (17pp)

    Article  CAS  Google Scholar 

  • Huang GW, **ao HM, Fu SY (2014) Paper-based silver nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability. Nanoscale 6:8495–8502

    Article  CAS  Google Scholar 

  • Jeong S, Ha YG, Moon J, Facchetti A, Marks TJ (2010) Role of gallium do** in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv Mater 22:1346–1350

    Article  CAS  Google Scholar 

  • Kamiya T, Hosono H (2016) Oxide TFTs. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer International, Cham, Switzerland, pp 1111–1144

    Chapter  Google Scholar 

  • Kang J, Jariwala D, Ryder CR, Wells SA, Choi Y, Hwang E, Cho JH, Marks TJ, Hersam MC (2016) Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett 16(4):2580–2585

    Article  CAS  Google Scholar 

  • Kast MG, Cochran EA, Enman LJ, Mitchson G, Ditto J, Siefe C, Plassmeyer PN, Greenaway AL, Johnson DC, Page CJ, Boettcher SW (2016) Amorphous mixed-metal oxide thin films from aqueous solution precursors with near-atomic smoothness. J Am Chem Soc 138:16800–16808

    Article  CAS  Google Scholar 

  • Kim S, Ju S, Back JH et al (2008) Aligned single-walled carbon nanotube thin-film transistor arrays for transparent electronics. In: Proceedings of the 66th DRC Device Research Conference Digest (DRC ’08), pp 113–114

    Google Scholar 

  • Kim YH, Heo JS, Kim TH, Park S, Yoon MH, Kim J, Oh MS, Yi GR, Noh YY, Park SK (2012) Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489:128–132

    Article  CAS  Google Scholar 

  • Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666

    Article  CAS  Google Scholar 

  • Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93:465–475

    Article  CAS  Google Scholar 

  • Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26:6950–6958

    Article  CAS  Google Scholar 

  • Kunii HIM, Hanna J-I (2016) Solution-processed, low-voltage polycrystalline organic field-effect transistor fabricated using highly ordered liquid crystal with low-k gate dielectric. IEEE Electron Device Lett 37:486–488

    Article  CAS  Google Scholar 

  • Lee CH, Hsu CH, Chen IR, Wu WJ, Lin CT (2014) Percolation of carbon nanoparticles in poly(3-hexylthiophene) enhancing carrier mobility in organic thin film transistors. Adv Mater Sci Eng 2014:878064

    Google Scholar 

  • Li Y, Jian F (2014) An inkjet-printed TTF-TCNQ nanoweb as an effective modification layer for high mobility organic field-effect transistors. J Mater Chem C 2:1413–1417

    Article  CAS  Google Scholar 

  • Li S, Feng L, Zhao J, Guo X, Zhang Q (2015) Low temperature cross-linked, high performance polymer gate dielectrics for solution-processed organic field-effect transistors. J Polym Sci Pol Chem 6:5884–5890

    CAS  Google Scholar 

  • Lin CT, Hsu CH, Chen IR, Lee CH, Wu WJ (2011) Enhancement of carrier mobility in all-inkjet-printed organic thinfilm transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles. Thin Solid Films 519:8008–8012

    Article  CAS  Google Scholar 

  • Lin T, Li X, Jang J (2016) High performance P-type NiOx thin-film transistor by Sn do**. Appl Phys Lett 108:233503

    Article  CAS  Google Scholar 

  • Ling X, Wang H, Huang S, **a F, Dresselhaus MS (2015) The renaissance of black phosphorus. Proc Natl Acad Sci U S A 112(15):4523–4530

    Article  CAS  Google Scholar 

  • Liu X, Wang C, Cai B et al (2012) Rational design of amorphous indium zinc oxide/carbon nanotubes hybrid film for unique performance transistors. Nano Lett 12:3596–3601

    Article  CAS  Google Scholar 

  • Liu R, Shen F, Ding H, Lin J, Gu W, Cui Z, Zhang T (2013) All-carbon-based field effect transistors fabricated by aerosol jet printing on flexible substrates. J Micromech Microeng 23:065027

    Article  CAS  Google Scholar 

  • Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R, Shan F (2016) Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-K dielectric. Appl Phys Lett 108:233506

    Article  CAS  Google Scholar 

  • Liu X, Kanehara M, Liu C, Minari T (2017a) Ultra-high-resolution printing of flexible organic thin-film transistors. J Inf Disp 18:93–99

    Article  CAS  Google Scholar 

  • Liu A, Nie S, Liu G, Zhu H, Zhu C, Shin B, Fortunato E, Martins R, Shan F (2017b) In situ one-step synthesis of P-type copper oxide for low-temperature, solution-processed thin-film transistors. J Mater Chem C 5:2524–2530

    Article  CAS  Google Scholar 

  • Liu A, Zhu H, Guo Z, Meng Y, Liu G, Fortunato E, Martins R, Shan F (2017c) Solution combustion synthesis: low-temperature processing for p-type cu:NiO thin films for transparent electronics. Adv Mater 29:1701599

    Article  CAS  Google Scholar 

  • Liu A, Zhu H, Noh Y-Y (2019) Solution-processed inorganic p-channel transistors: recent advances and perspectives. Mater Sci Eng R 135:85–100

    Article  Google Scholar 

  • Long DX et al (2015) Solution processed vanadium pentoxide as charge injection layer in polymer field-effect transistor with Mo electrodes. Org Electron 17:66–76

    Article  CAS  Google Scholar 

  • Mizukami M et al (2006) Flexible AMOLED panel driven by bottom-contact OTFTs. IEEE Electron Device Lett 27:249–251

    Article  CAS  Google Scholar 

  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Article  CAS  Google Scholar 

  • Natali D, Caironi M (2012) Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv Mater 24:1357–1387

    Article  CAS  Google Scholar 

  • Nga Ng T, Schwartz D, Mei P et al (2015) Printed dose-recording tag based on organic complementary circuits and ferroelectric nonvolatile memories. Sci Rep 5:13457. https://doi.org/10.1038/srep13457

    Article  CAS  Google Scholar 

  • Nikolka M et al (2017) High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat Mater 16(3):356–362

    Article  CAS  Google Scholar 

  • Nketia-Yawson B, Jung AR, Noh Y, Ryu GS, Tabi GD, Lee KK, Kim B, Noh YY (2017) Highly sensitive flexible NH3 sensors based on printed organic transistors with fluorinated conjugated polymers. ACS Appl Mater Interfaces 9:7322–7330

    Article  CAS  Google Scholar 

  • Noda M et al (2011) An OTFT-driven rollable OLED display. J Soc Inf Display 19:316–322

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Park CB et al (2015) Commercially applicable, solution-processed organic TFT and its backplane application in electrophoretic displays. Solid State Electron 111:227–233

    Article  CAS  Google Scholar 

  • Park S, Kim C-H, Lee W-J, Sung S, Yoon M-H (2017) Sol-gel metal oxide dielectrics for all-solution-processed electronics. Mater Sci Eng R 114:1–22

    Article  Google Scholar 

  • Patil N, Lin A, Zhang J et al (2009) VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs. In: Proceedings of the international electron devices meeting (IEDM ’09), pp 23.4.1–23.4.4

    Google Scholar 

  • Peng B, Chan PKL (2014) Flexible organic transistors on standard printing paper and memory properties induced by floated gate electrode. Org Electron 15:203–210

    Article  CAS  Google Scholar 

  • Qian L, Xu W, Fan X, Wang C, Zhang J, Zhao J, Cui Z (2013) Electrical and photoresponse properties of printed thin-film transistors based on poly(9,9-dioctylfluorene-co-bithiophene) sorted large-diameter semiconducting carbon nanotubes. J Phys Chem C 117:18243–18250

    Article  CAS  Google Scholar 

  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

    Article  CAS  Google Scholar 

  • Rim YS, Jeong WH, Kim DL, Lim HS, Kim KM, Kim HJ (2012) Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem 22:12491

    Article  CAS  Google Scholar 

  • Sanctis S, Koslowski N, Hoffmann RC, Guhl C, Erdem E, Weber S, Schneider JJ (2017) Towards an understanding of thin film transistor performance in solution processed amorphous zinc-tin-oxide (Zto) thin films. ACS Appl Mater Interfaces 9:21328–21337

    Article  CAS  Google Scholar 

  • Schmidt GC, Hoeft D, Haase K, Huebler AC, Karpov E, Tkachov R, Stamm M, Kiriy A, Haidu F, Zahn DRT, Yan H, Facchetti A (2014) Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors. J Mater Chem C 2:5149–5154

    Article  CAS  Google Scholar 

  • Shannon JM, Sporea RA, Georgakopoulos S, Shkunov M, Silva SRP (2013) Low-field behavior of source-gated transistors. IEEE Trans Electron Devices 60:2444–2449

    Article  Google Scholar 

  • Shi Y, Zhou W, Lu A-Y, Fang W, Lee Y-H, Hsu AL, Kim SM, Kim KK, Yang HY, Li L-J, Idrobo J-C, Kong J (2012) van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12(6):2784–2791

    Article  CAS  Google Scholar 

  • Shih C-J, Pfattner R, Chiu Y-C, Liu N, Lei T, Kong D, Kim Y, Chou H-H, Bae W-G, Bao Z (2015) Partially-screened field effect and selective carrier injection at organic semiconductor/graphene heterointerface. Nano Lett 15(11):7587–7595

    Article  CAS  Google Scholar 

  • Shristiraj N, Anand A, Vimala P (2015) Gallium nitride (GaN) high electron mobility transistors (HEMT): a review. Int J Adv Res Trends Eng Technol II(XXVII):126–128

    Google Scholar 

  • Sporea R, Trainor M, Young N, Shannon J, Silva S (2014) Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits. Sci Rep 4:4295

    Article  CAS  Google Scholar 

  • Sun D-M, Timmermans MY, Tian Y et al (2011) Flexible high performance carbon nanotube integrated circuits. Nat Nanotechnol 6(3):156–161

    Article  CAS  Google Scholar 

  • Sun S, Lan L, **ao P, Chen Z, Lin Z, Li Y, Xu H, Xu M, Chen J, Peng J, Cao Y (2015) High mobility flexible polymer thin film transistors with an octadecyl-phosphonic acid treated electrochemically oxidized alumina gate insulator. J Mater Chem C 3:7062–7066

    Article  CAS  Google Scholar 

  • Tanaka T, ** H, Miyata Y et al (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4):1497–1500

    Article  CAS  Google Scholar 

  • Tang W, Feng L, Jiang C, Yao G, Zhao J, Cui Q, Guo X (2014) Controlling the surface wettability of the polymer dielectric for improved resolution of inkjet-printed electrodes and patterned channel regions in low-voltage solution-processed organic thin film transistors. J Mater Chem C 2:5553–5558

    Article  CAS  Google Scholar 

  • Tang W et al (2015) High-performance solution-processed low-voltage polymer thin-film transistors with low-/high-bilayer gate dielectric. IEEE Electron Device Lett 36:950–952

    Article  CAS  Google Scholar 

  • Tang W et al (2016) Low-voltage pH sensor tag based on all solution processed organic field-effect transistor. IEEE Electron Device Lett. 37:1002–1005

    Article  CAS  Google Scholar 

  • Tong S, Sun J, Yang J (2018) Printed thin-film transistors: research from China. ACS Appl Mater Interfaces 10:25902–25924

    Article  CAS  Google Scholar 

  • Venkateshvaran D et al (2014) Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515:384–388

    Article  CAS  Google Scholar 

  • Wang C, Xu W, Zhao J, Lin J, Chen Z, Cui Z (2014) Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. J Mater Sci 49:2054–2062

    Article  CAS  Google Scholar 

  • Wang B, Yu X, Guo P, Huang W, Zeng L, Zhou N, Chi L, Bedzyk MJ, Chang RPH, Marks TJ, Facchetti A (2016a) Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis. Adv Electron Mater 2:1500427

    Article  CAS  Google Scholar 

  • Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN (2016b) Recent developments in P-type oxide semiconductor materials and devices. Adv Mater 28:3831–3892

    Article  CAS  Google Scholar 

  • Wu Z, Chen Z, Du X et al (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  Google Scholar 

  • Wu Y, Lin X, Zhang M (2013) Carbon nanotubes for thin film transistor: fabrication, properties, and applications. J Nanomater 2013:627215. (16 pages)

    Google Scholar 

  • Wu X, Chen Z, Zhou T, Shao S, **e M, Song M, Cui Z (2015) Printable poly(methylsilsesquioxane) dielectric ink and its application in solution processed metal oxide thin-film transistors. RSC Adv 5:20924–20930

    Article  CAS  Google Scholar 

  • Wu B, Zhao Y, Nan H, Yang Z, Zhang Y, Zhao H, He D, Jiang Z, Liu X, Li Y, Shi Y, Ni Z, Wang J, Xu J-B, Wang X (2016) Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions. Nano Lett 16(6):3754–3759

    Article  CAS  Google Scholar 

  • Xu W, Liu Z, Zhao J, Xu W, Gu W, Zhang X, Qian L, Cui Z (2014) Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale 6:14891–14897

    Article  CAS  Google Scholar 

  • Xu Y, Liu C, Khim D, Noh Y-Y (2015) Development of high-performance printed organic field-effect transistors and integrated circuits. Phys Chem Chem Phys 17:26553–26574

    Article  CAS  Google Scholar 

  • Xu Q, Zhao J, Pecunia V, Xu W, Zhou C, Dou J, Gu W, Lin J, Mo L, Zhao Y, Cui Z (2017) Selective conversion from P-type to N-type of printed bottom-gate carbon nanotube thin-film transistors and application in complementary metal-oxide-semiconductor inverters. ACS Appl Mater Interfaces 9:12750–12758

    Article  CAS  Google Scholar 

  • Xu W, Li H, Xu J-B, Wang L (2018) Recent advances of solution-processed metal oxide thin-film transistors. ACS Appl Mater Interfaces 10:25878–25901

    Article  CAS  Google Scholar 

  • Yang J, Vak D, Clark N, Subbiah J, Wong WWH, Jones DJ, Watkins SE, Wilson G (2013) Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Sol Energy Mater Sol Cells 109:47–55

    Article  CAS  Google Scholar 

  • Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11(9):3768–3773

    Article  CAS  Google Scholar 

  • Yu Y, **ao X, Zhang Y, Li K, Yan C, Wei X, Chen L, Zhen H, Zhou H, Zhang S, Zheng Z (2016) Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv Mater 28:4926–4934

    Article  CAS  Google Scholar 

  • Zaki T et al (2013) S-parameter characterization of submicrometer low-voltage organic thin-film transistors. IEEE Electron Device Lett 34:520–522

    Article  CAS  Google Scholar 

  • Zhang J, Zhao Y, Wei Z, Sun Y, He Y, Di CA, Xu W, Hu W, Liu Y, Zhu D (2011) Inkjet-printed organic electrodes for bottom-contact organic field-effect transistors. Adv Funct Mater 21:786–791

    Article  CAS  Google Scholar 

  • Zhang J, Hu P, Zhang R, Wang X, Yang B, Cao W, Li Y, He X, Wang Z, O’Neill W (2012a) Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors. J Mater Chem 22:714–718

    Article  CAS  Google Scholar 

  • Zhang L, Liu H, Zhao Y, Sun X, Wen Y, Guo Y, Gao X, Di CA, Yu G, Liu Y (2012b) Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv Mater 24:436–440

    Article  CAS  Google Scholar 

  • Zhang F et al (2013) Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv Mater 25:1401–1407

    Article  CAS  Google Scholar 

  • Zhang X, Zhao J, Tange M, Xu W, Xu W, Zhang K, Guo W, Okazaki T, Cui Z (2015) Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 94:903–910

    Article  CAS  Google Scholar 

  • Zhu Z, Murtaza I, Meng H, Huang W (2017) Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Adv 7:17387–17397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, C. (2022). Printed Flexible Thin-Film Transistors. In: Advanced Materials for Printed Flexible Electronics. Springer Series in Materials Science, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-79804-8_6

Download citation

Publish with us

Policies and ethics

Navigation