Tip-Based Nanofabrication for NEMS Devices

  • Chapter
  • First Online:
Advanced MEMS/NEMS Fabrication and Sensors

Abstract

Nano-electro-mechanical systems (NEMS) have been extensively studied and widely used in a variety of fields, for its ultrasensitive performance and enabling cutting-edge researches at this minuscule scale. However, existing nanofabrication still suffers from high cost or the difficulty of scaling up. This chapter gives an overview of currently widely employed nanofabrication techniques and then highlights one promising nanofabrication method based on scanning probes—tip-based nanofabrication (TBN). Finally, we conclude on the three major trends of current TBN technology development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almog, R., Zaitsev, S., Shtempluck, O., & Buks, E. (2007). Noise squeezing in a nanomechanical duffing resonator. Physical Review Letters, 98, 1–4. https://doi.org/10.1103/PhysRevLett.98.078103

    Article  Google Scholar 

  • Alsteens, D., Gaub, H. E., Newton, R., Pfreundschuh, M., Gerber, C., & MĂĽller, D. J. (2017). Atomic force microscopy-based characterization and design of biointerfaces. Nature Reviews Materials, 2, 17008. https://doi.org/10.1038/natrevmats.2017.8

    Article  Google Scholar 

  • Arcamone, J., Sansa, M., Verd, J., Uranga, A., Abadal, G., Barniol, N., et al. (2009). Nanomechanical mass sensor for spatially resolved ultrasensitive monitoring of deposition rates in stencil lithography. Small, 5, 176–180.

    Article  Google Scholar 

  • Benumof, R. (1982). Momentum propagation by traveling waves on a string. American Journal of Physics, 50, 20–25. https://doi.org/10.1119/1.12980

    Article  Google Scholar 

  • Blaikie, A., Miller, D., & Alemán, B. J. (2019). A fast and sensitive room-temperature graphene nanomechanical bolometer. Nature Communications, 10, 1–8. https://doi.org/10.1038/s41467-019-12562-2

    Article  Google Scholar 

  • Chang, J., Koh, K., Min, B.-K., Lee, S. J., Kim, J., & Lin, L. (2013). Synthesis and bidirectional frequency tuning of cantilever-shape nano resonators using a focused ion beam. ACS Applied Materials & Interfaces, 5, 9684–9690.

    Article  Google Scholar 

  • Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., & Bachtold, A. (2012). A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301–304. https://doi.org/10.1038/nnano.2012.42

    Article  Google Scholar 

  • Cheng, B., Emboras, A., Salamin, Y., Ducry, F., Ma, P., Fedoryshyn, Y., et al. (2019). Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Communications on Physics, 2, 1–9.

    Article  Google Scholar 

  • Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 67, 3114–3116.

    Article  Google Scholar 

  • Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Imprint lithography with 25-nanometer resolution. Science (80- ), 272, 85–87.

    Article  Google Scholar 

  • Cleland, A. N., & Roukes, M. L. (1998). A nanometre-scale mechanical electrometer. Nature, 392, 160–162. https://doi.org/10.1038/32373

    Article  Google Scholar 

  • Coronado, E., Forment-Aliaga, A., Navarro-Moratalla, E., Pinilla-Cienfuegos, E., & Castellanos-Gomez, A. (2013). Nanofabrication of TaS 2 conducting layers nanopatterned with ta 2 O 5 insulating regions via AFM. Journal of Materials Chemistry C, 1, 7692–7694.

    Article  Google Scholar 

  • Craighead, H. G. (2000). Nanoelectromechanical systems. Science (80- ), 290, 1532–1535.

    Article  Google Scholar 

  • Cui, Z. (2016). Nanofabrication: Principles, capabilities and limits. Springer.

    Google Scholar 

  • Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Postek, M. T., & Bennett, J. (1990). Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters, 56, 2001–2003.

    Article  Google Scholar 

  • De Alba, R., Massel, F., Storch, I. R., Abhilash, T. S., Hui, A., McEuen, P. L., et al. (2016). Tunable phonon-cavity coupling in graphene membranes. Nature Nanotechnology, 11, 741–746. https://doi.org/10.1038/nnano.2016.86

    Article  Google Scholar 

  • Dohn, S., Svendsen, W., Boisen, A., & Hansen, O. (2007). Mass and position determination of attached particles on cantilever based mass sensors. The Review of Scientific Instruments, 78, 1–4. https://doi.org/10.1063/1.2804074

    Article  Google Scholar 

  • Dominguez-Medina, S., Fostner, S., Defoort, M., Sansa, M., Stark, A., Halim, M. A., et al. (2018). Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science (80- ), 362, 918–922. https://doi.org/10.1126/science.aat6457

    Article  Google Scholar 

  • Duraffourg, L., & Arcamone, J. (2015). Nanoelectromechanical systems. Wiley.

    Book  Google Scholar 

  • Eichler, A., Heugel, T. L., Leuch, A., Degen, C. L., Chitra, R., & Zilberberg, O. (2018). A parametric symmetry breaking transducer. Applied Physics Letters, 112, 233105. https://doi.org/10.1063/1.5031058

    Article  Google Scholar 

  • Espinosa, F. M., Ryu, Y. K., Marinov, K., Dumcenco, D., Kis, A., & Garcia, R. (2015). Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Applied Physics Letters, 106, 103503.

    Article  Google Scholar 

  • Fan, X., Forsberg, F., Smith, A. D., Schröder, S., Wagner, S., RödjegĂĄrd, H., et al. (2019). Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nature Electronics, 2, 394–404. https://doi.org/10.1038/s41928-019-0287-1

    Article  Google Scholar 

  • Fan, X., Smith, A. D., Forsberg, F., Wagner, S., Schröder, S., Akbari, S. S. A., et al. (2020). Manufacture and characterization of graphene membranes with suspended silicon proof masses for MEMS and NEMS applications. Microsystems & Nanoengineering, 6. https://doi.org/10.1038/s41378-019-0128-4

  • Gotoh, Y., Matsumoto, K., Maeda, T., Cooper, E. B., Manalis, S. R., Fang, H., et al. (2000). Experimental and theoretical results of room-temperature single-electron transistor formed by the atomic force microscope nano-oxidation process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18, 1321–1325.

    Article  Google Scholar 

  • Grivet, P., Hawkes, P. W., & Septier, A. (2013). Electron optics. Elsevier.

    Google Scholar 

  • Guerra, D. N., Dunn, T., & Mohanty, P. (2009). Signal amplification by 1/f noise in silicon-based nanomechanical resonators. Nano Letters, 9, 3096–3099.

    Article  Google Scholar 

  • GĂĽttinger, J., Noury, A., Weber, P., Eriksson, A. M., Lagoin, C., Moser, J., et al. (2017). Energy-dependent path of dissipation in nanomechanical resonators. Nature Nanotechnology, 12, 631–636. https://doi.org/10.1038/nnano.2017.86

    Article  Google Scholar 

  • Haller, I., Hatzakis, M., & Srinivasan, R. (1968). High-resolution positive resists for electron-beam exposure. IBM Journal of Research and Development, 12, 251–256.

    Article  Google Scholar 

  • Hanay, M. S., Kelber, S., Naik, A. K., Chi, D., Hentz, S., Bullard, E. C., et al. (2012). Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology, 7, 602–608. https://doi.org/10.1038/nnano.2012.119

    Article  Google Scholar 

  • Howell, S. T., Grushina, A., Holzner, F., & Brugger, J. (2020). Thermal scanning probe lithography—A review. Microsystems & Nanoengineering, 6, 1–24.

    Article  Google Scholar 

  • Hu, H. (2014). Nano-electro-mechanical systems fabricated by tip-based nanofabrication. University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Hu, S., Hamidi, A., Altmeyer, S., Köster, T., Spangenberg, B., & Kurz, H. (1998). Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures—Processing, Measurement, and Phenomena, 16, 2822–2824.

    Article  Google Scholar 

  • Hu, H., Mohseni, P. K., Pan, L., Li, X., Somnath, S., Felts, J. R., et al. (2013). Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication. Journal of Vacuum Science & Technology, B: Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena, 31, 06FJ01.

    Google Scholar 

  • Hu, H., Cho, H., Somnath, S., Vakakis, A. F., & King, W. P. (2014a). Silicon nano-mechanical resonators fabricated by using tip-based nanofabrication. Nanotechnology, 25, 275301.

    Article  Google Scholar 

  • Hu, H., Zhuo, Y., Oruc, M. E., Cunningham, B. T., & King, W. P. (2014b). Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication. Nanotechnology, 25, 455301.

    Article  Google Scholar 

  • Hua, Y., Saxena, S. R., Henderson, C. L., & King, W. P. (2007). Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro/Nanolithography, MEMS and MOEMS, 6, 23012.

    Article  Google Scholar 

  • Janzen, A., Poshtiban, S., Singh, A., & Evoy, S. (2012). Fabrication of nanoresonator biosensing arrays using nanoimprint lithography. Journal of Micro/Nanolithography, MEMS and MOEMS, 11, 23013.

    Article  Google Scholar 

  • Kirsanov, A., Kiselev, A., Stepanov, A., & Polushkin, N. (2003). Femtosecond laser-induced nanofabrication in the near-field of atomic force microscope tip. Journal of Applied Physics, 94, 6822–6826.

    Article  Google Scholar 

  • Kyoung Ryu, Y., Aitor Postigo, P., Garcia, F., & Garcia, R. (2014). Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks. Applied Physics Letters, 104, 223112.

    Article  Google Scholar 

  • Li, M., Bhiladvala, R. B., Morrow, T. J., Sioss, J. A., Lew, K.-K., Redwing, J. M., et al. (2008). Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotechnology, 3, 88–92.

    Article  Google Scholar 

  • Liu, H., Hoeppener, S., & Schubert, U. S. (2016). Nanoscale materials patterning by local electrochemical lithography. Advanced Engineering Materials, 18, 890–902.

    Article  Google Scholar 

  • Mahboob, I., & Yamaguchi, H. (2008). Piezoelectrically pumped parametric amplification and Q enhancement in an electromechanical oscillator. Applied Physics Letters, 92, 1–4. https://doi.org/10.1063/1.2903709

    Article  Google Scholar 

  • Mahboob, I., Okamoto, H., Yamaguchi, H., Onomitsu, K., & Yamaguchi, H. (2014). Two-mode thermal-noise squeezing in an electromechanical resonator. Physical Review Letters, 113, 167203. https://doi.org/10.1103/PhysRevLett.113.167203

    Article  Google Scholar 

  • Malshe, A. P., Rajurkar, K. P., Virwani, K. R., Taylor, C. R., Bourell, D. L., Levy, G., et al. (2010). Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Annals, 59, 628–651.

    Article  Google Scholar 

  • Matheny, M. H., Emenheiser, J., Fon, W., Chapman, A., Salova, A., Rohden, M., et al. (2019). Exotic states in a simple network of nanoelectromechanical oscillators. Science (80- ), 363, eaav7932. https://doi.org/10.1126/science.aav7932

    Article  MathSciNet  Google Scholar 

  • Mathew, J. P., Patel, R. N., Borah, A., Vijay, R., & Deshmukh, M. M. (2016). Dynamical strong coupling and parametric amplification in mechanical modes of graphene drums. Nature Nanotechnology, 11, 747–751. https://doi.org/10.1038/nnano.2016.94

    Article  Google Scholar 

  • Meireles, L. M., Neto, E. G. S., Ferrari, G. A., Neves, P. A. A., Gadelha, A. C., Silvestre, I., et al. (2020). Graphene electromechanical water sensor: The Wetristor. Advanced Electronic Materials, 6, 1–6. https://doi.org/10.1002/aelm.201901167

    Article  Google Scholar 

  • Milner, A. A., Zhang, K., & Prior, Y. (2008). Floating tip nanolithography. Nano Letters, 8, 2017–2022.

    Article  Google Scholar 

  • Naik, A. K., Hanay, M. S., Hiebert, W. K., Feng, X. L., & Roukes, M. L. (2009). Towards single-molecule nanomechanical mass spectrometry. Nature Nanotechnology, 4, 445–450. https://doi.org/10.1038/nnano.2009.152

    Article  Google Scholar 

  • Neubeck, S., Ponomarenko, L. A., Freitag, F., Giesbers, A. J. M., Zeitler, U., Morozov, S. V., et al. (2010). From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small, 6, 1469–1473.

    Article  Google Scholar 

  • Olcum, S., Cermak, N., Wasserman, S. C., & Manalis, S. R. (2015). High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nature Communications, 6, 7070. https://doi.org/10.1038/ncomms8070

    Article  Google Scholar 

  • Papadopoulos, C. (2016). Nanofabrication: Principles and applications. Springer.

    Book  Google Scholar 

  • Papariello, L., Eichler, A., Zilberberg, O., Leuch, A., Degen, C. L., & Chitra, R. (2016). Parametric symmetry breaking in a nonlinear resonator. Physical Review Letters, 117, 1–5. https://doi.org/10.1103/physrevlett.117.214101

    Article  Google Scholar 

  • Paul, P. C., Knoll, A. W., Holzner, F., Despont, M., & Duerig, U. (2011). Rapid turnaround scanning probe nanolithography. Nanotechnology, 22, 275306.

    Article  Google Scholar 

  • Piner, R. D., Zhu, J., Xu, F., Hong, S., & Mirkin, C. A. (1999). “Dip-pen” nanolithography. Science (80- ), 283, 661–663.

    Article  Google Scholar 

  • Prasad, P., Arora, N., & Naik, A. (2017). Parametric amplification in MoS2 drum resonator. Nanoscale, 9, 18299–18304. https://doi.org/10.1039/C7NR05721K

    Article  Google Scholar 

  • Rawlings, C., Ryu, Y. K., RĂĽegg, M., Lassaline, N., Schwemmer, C., Duerig, U., et al. (2018). Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing. Nanotechnology, 29, 505302.

    Article  Google Scholar 

  • Ryu, Y. K., & Garcia, R. (2017). Advanced oxidation scanning probe lithography. Nanotechnology, 28, 142003.

    Article  Google Scholar 

  • Ryu, Y. K., Chiesa, M., & Garcia, R. (2013). Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology, 24, 315205.

    Article  Google Scholar 

  • Sader, J. E., Hanay, M. S., Neumann, A. P., & Roukes, M. L. (2018). Mass spectrometry using nanomechanical systems: Beyond the point-mass approximation. Nano Letters, 18, 1608–1614. https://doi.org/10.1021/acs.nanolett.7b04301

    Article  Google Scholar 

  • Sage, E., Sansa, M., Fostner, S., Defoort, M., GĂ©ly, M., Naik, A. K., et al. (2018). Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nature Communications, 9, 3283. https://doi.org/10.1038/s41467-018-05783-4

    Article  Google Scholar 

  • Schmid, S., Villanueva, L. G., & Roukes, M. L. (2016). Fundamentals of nanomechanical resonators. Springer International. https://doi.org/10.1007/978-3-319-28691-4

    Book  Google Scholar 

  • Sheehan, P. E., Whitman, L. J., King, W. P., & Nelson, B. A. (2004). Nanoscale deposition of solid inks via thermal dip pen nanolithography. Applied Physics Letters, 85, 1589–1591.

    Article  Google Scholar 

  • Shirakashi, J.-I., & Takemura, Y. (2004). Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation. IEEE Transactions on Magnetics, 40, 2640–2642.

    Article  Google Scholar 

  • Sievilä, P., Chekurov, N., & Tittonen, I. (2010). The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching. Nanotechnology, 21, 145301.

    Article  Google Scholar 

  • Sigrist, M., Fuhrer, A., Ihn, T., Ensslin, K., Driscoll, D. C., & Gossard, A. C. (2004). Multiple layer local oxidation for fabricating semiconductor nanostructures. Applied Physics Letters, 85, 3558–3560.

    Article  Google Scholar 

  • Singh, R., Nicholl, R. J. T., Bolotin, K. I., & Ghosh, S. (2018). Motion transduction with thermo-mechanically squeezed graphene resonator modes. Nano Letters, 18, 6719–6724. https://doi.org/10.1021/acs.nanolett.8b02293

    Article  Google Scholar 

  • Skaug, M. J., Schwemmer, C., Fringes, S., Rawlings, C. D., & Knoll, A. W. (2018). Nanofluidic rocking Brownian motors. Science (80- ), 359, 1505–1508.

    Article  Google Scholar 

  • Steele, G. A., Huttel, A. K., Witkamp, B., Poot, M., Meerwaldt, H. B., Kouwenhoven, L. P., et al. (2009). Strong coupling between single-electron tunneling and nanomechanical motion. Science (80- ), 325, 1103–1107. https://doi.org/10.1126/science.1176076

    Article  Google Scholar 

  • Sulkko, J., Sillanpaa, M. A., Hakkinen, P., Lechner, L., Helle, M., Fefferman, A., et al. (2010). Strong gate coupling of high-Q nanomechanical resonators. Nano Letters, 10, 4884–4889.

    Article  Google Scholar 

  • Sun, J., Muruganathan, M., & Mizuta, H. (2016). Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Science Advances, 2, 1–8. https://doi.org/10.1126/sciadv.1501518

    Article  Google Scholar 

  • Szoszkiewicz, R., Okada, T., Jones, S. C., Li, T.-D., King, W. P., Marder, S. R., et al. (2007). High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Letters, 7, 1064–1069.

    Article  Google Scholar 

  • Thundat, T., Nagahara, L. A., Oden, P. I., Lindsay, S. M., George, M. A., & Glaunsinger, W. S. (1990). Modification of tantalum surfaces by scanning tunneling microscopy in an electrochemical cell. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 3537–3541.

    Article  Google Scholar 

  • Tseng, A. A. (2011). Tip-based nanofabrication: Fundamentals and applications. Springer.

    Book  Google Scholar 

  • Ventra, M., Evoy, S., & Heflin, J. R. (2006). Introduction to nanoscale science and technology. Springer Science & Business Media.

    Google Scholar 

  • Vettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., et al. (2000). The “millipede”—More than thousand tips for future AFM storage. IBM Journal of Research and Development, 44, 323–340.

    Article  Google Scholar 

  • Wolf, H., Rawlings, C., Mensch, P., Hedrick, J. L., Coady, D. J., Duerig, U., et al. (2015). Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. Journal of Vacuum Science & Technology, B: Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena, 33, 02B102. https://doi.org/10.1116/1.4901413

    Article  Google Scholar 

  • Yuksel, M., Orhan, E., Yanik, C., Ari, A. B., Demir, A., & Hanay, M. S. (2019). Nonlinear nanomechanical mass spectrometry at the single-nanoparticle level. Nano Letters, 19, 3583–3589. https://doi.org/10.1021/acs.nanolett.9b00546

    Article  Google Scholar 

  • Zhang, K., Fu, Q., Pan, N., Yu, X., Liu, J., Luo, Y., et al. (2012). Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nature Communications, 3, 1–6.

    Article  Google Scholar 

  • Zheng, X., Calò, A., Albisetti, E., **angyu, L., Alharbi, A. S. M., Arefe, G., et al. (2019). Patterning metal contacts on monolayer MoS 2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2, 17–25.

    Article  Google Scholar 

  • Zheng, X., Calò, A., Cao, T., Liu, X., Huang, Z., Das, P. M., et al. (2020). Spatial defects nanoengineering for bipolar conductivity in MoS 2. Nature Communications, 11, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pu, D., Hu, H. (2022). Tip-Based Nanofabrication for NEMS Devices. In: Yang, Z. (eds) Advanced MEMS/NEMS Fabrication and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-79749-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79749-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79748-5

  • Online ISBN: 978-3-030-79749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation