Management and Modulation of Cholinesterase

  • Chapter
  • First Online:
Toxicology of Organophosphate Poisoning
  • 527 Accesses

Abstract

Inhibition of cholinesterases is the key by which organophosphates (OP) exert their toxic effects on the target organism. Humans are affected by OP poisoning by both acute (intentional and unintentional) and chronic toxicity. Phosphorylation of AChE at serine residue in the catalytic gorge is leading to the formation of AChE-OP adduct. Reactivation of AChE by self is nearly impossible. Oximes are potent reactivators of AChE. Bioscavenging the OP available in the bloodstream is an alternate way of protecting endogenous cholinesterases. This chapter has discussed the management of AChE by means of reactivation, bioscavenging using stoichiometric and catalytic bioscavengers, and nanotechnological approaches. The possibility of reactivation of aged AChE has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashani, Y., Grauer, E., Grunwald, J., Allon, N., & Raveh, L. (1998). Current capabilities in extrapolating from animal to human the capacity of human butyrylcholinesterase to detoxify organophosphates. In Structure and function of cholinesterases and related proteins (pp. 255–260). Springer.

    Chapter  Google Scholar 

  • Ashani, Y., Leader, H., Aggarwal, N., Silman, I., Worek, F., Sussman, J. L., & Goldsmith, M. (2016). In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications. Chemico-Biological Interactions, 259, 252–256.

    Article  CAS  Google Scholar 

  • Aurbek, N., Thiermann, H., Szinicz, L., Eyer, P., & Worek, F. (2006). Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Toxicology, 224(1–2), 91–99.

    Article  CAS  Google Scholar 

  • Bigley, A. N., Mabanglo, M. F., Harvey, S. P., & Raushel, F. M. (2015). Variants of phosphotriesterase for the enhanced detoxification of the chemical warfare agent VR. Biochemistry, 54(35), 5502–5512.

    Article  CAS  Google Scholar 

  • Blanton, T. (2015). Quinone methide precursors as potential therapeutics towards the Realkylation of aged acetylcholinesterase. The Ohio State University.

    Google Scholar 

  • Bourne, Y., Taylor, P., Radić, Z., & Marchot, P. (2003). Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. The EMBO Journal, 22(1), 1–12.

    Article  CAS  Google Scholar 

  • Brazzolotto, X., Wandhammer, M., Ronco, C., Trovaslet, M., Jean, L., Lockridge, O., Renard, P., & Nachon, F. (2012). Human butyrylcholinesterase produced in insect cells: Huprine-based affinity purification and crystal structure. The FEBS Journal, 279(16), 2905–2916.

    Article  CAS  Google Scholar 

  • Bunton, C. A., & Ihara, Y. (1977). Micellar effects upon dephosphorylation and deacylation by oximate ions. The Journal of Organic Chemistry, 42(17), 2865–2869.

    Article  CAS  Google Scholar 

  • Cerasoli, D. M., Armstrong, S. J., Reeves, T. E., Hodgins, S. M., Kasten, S. A., Lee-Stubbs, R. B., Cadieux, C. L., Otto, T. C., Capacio, B. R., & Lenz, D. E. (2020). Butyrylcholinesterase, a stereospecific in vivo bioscavenger against nerve agent intoxication. Biochemical Pharmacology, 171, 113670.

    Article  CAS  Google Scholar 

  • COHEN, O., KRONMAN, C., CHITLARU, T., ORDENTLICH, A., VELAN, B., & SHAFFERMAN, A. (2001). Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochemical Journal, 357(3), 795–802.

    Article  CAS  Google Scholar 

  • Cohen, O., Kronman, C., Raveh, L., Mazor, O., Ordentlich, A., & Shafferman, A. (2006). Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds. Molecular Pharmacology, 70(3), 1121–1131.

    Article  CAS  Google Scholar 

  • De Koning, M. C., Joosen, M. J. A., Noort, D., Van Zuylen, A., & Tromp, M. C. (2011). Peripheral site ligand–oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorganic & Medicinal Chemistry, 19(1), 588–594.

    Article  CAS  Google Scholar 

  • Delfino, R. T., Ribeiro, T. S., & Figueroa-Villar, J. D. (2009). Organophosphorus compounds as chemical warfare agents: A review. Journal of the Brazilian Chemical Society, 20(3), 407–428.

    Article  CAS  Google Scholar 

  • DeMar, J. C., Clarkson, E. D., Ratcliffe, R. H., Campbell, A. J., Thangavelu, S. G., Herdman, C. A., Leader, H., Schulz, S. M., Marek, E., & Medynets, M. A. (2010). Pro-2-PAM therapy for central and peripheral cholinesterases. Chemico-Biological Interactions, 187(1–3), 191–198.

    Article  CAS  Google Scholar 

  • Eyer, P., & Buckley, N. (2006). Pralidoxime for organophosphate poisoning. Lancet, 368(9553), 2110.

    Article  Google Scholar 

  • Fabry, S. (2016). Synthesis of Fluorobenzyl Alkylators: Studies toward Realkylation of aged acetylcholinesterase. The Ohio State University.

    Google Scholar 

  • Franjesevic, A. J., Sillart, S. B., Beck, J. M., Vyas, S., Callam, C. S., & Hadad, C. M. (2019). Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry (Weinheim an Der Bergstrasse, Germany), 25(21), 5337.

    CAS  Google Scholar 

  • Goldsmith, M., Aggarwal, N., Ashani, Y., Jubran, H., Greisen, P. J., Ovchinnikov, S., Leader, H., Baker, D., Sussman, J. L., & Goldenzweig, A. (2017). Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Engineering, Design and Selection, 30(4), 333–345.

    Article  CAS  Google Scholar 

  • Goldsmith, M., Eckstein, S., Ashani, Y., Greisen, P., Leader, H., Sussman, J. L., Aggarwal, N., Ovchinnikov, S., Tawfik, D. S., & Baker, D. (2016). Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Archives of Toxicology, 90(11), 2711–2724.

    Article  CAS  Google Scholar 

  • Haque, M. A., Lee, H. Y., Cho, D. Y., Lee, J. H., Hwang, C. E., & Cho, K. M. (2020). Cloning, expression, and functional characterization of an organophosphates insecticides degrading gene (opdC) from a potential probiotic Lactobacillus plantarum WCP931.

    Book  Google Scholar 

  • Hiblot, J., Bzdrenga, J., Champion, C., Chabriere, E., & Elias, M. (2015). Crystal structure of Vmo lac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia. Scientific Reports, 5(1), 1–11.

    Article  CAS  Google Scholar 

  • Hrvat, N. M., Zorbaz, T., Å inko, G., & Kovarik, Z. (2018). The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Toxicology Letters, 293, 222–228.

    Article  CAS  Google Scholar 

  • Jacquet, P., Daudé, D., Bzdrenga, J., Masson, P., Elias, M., & Chabrière, E. (2016). Current and emerging strategies for organophosphate decontamination: Special focus on hyperstable enzymes. Environmental Science and Pollution Research, 23(9), 8200–8218.

    Article  CAS  Google Scholar 

  • Katz, F. S., Pecic, S., Schneider, L., Zhu, Z., Hastings, A., Luzac, M., Macdonald, J., Landry, D. W., & Stojanovic, M. N. (2018). New therapeutic approaches and novel alternatives for organophosphate toxicity. Toxicology Letters, 291, 1–10.

    Article  CAS  Google Scholar 

  • Kharel, H., Pokhrel, N. B., Ghimire, R., & Kharel, Z. (2020). The efficacy of pralidoxime in the treatment of organophosphate poisoning in humans: A systematic review and meta-analysis of randomized trials. Cureus, 12(3).

    Google Scholar 

  • Kronman, C., Velan, B., Marcus, D., Ordentlich, A., Reuveny, S., & Shafferman, A. (1995). Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochemical Journal, 311(3), 959–967.

    Article  CAS  Google Scholar 

  • Kuca, K., Jun, D., & Musilek, K. (2006). Structural requirements of acetylcholinesterase reactivators. Mini Reviews in Medicinal Chemistry, 6(3), 269–277.

    Article  CAS  Google Scholar 

  • Kusic, R., Jovanovic, D., Randjelovic, S., Joksovic, D., Todorovic, V., Boskovic, B., Jokanovic, M., & Vojvodic, V. (1991). HI-6 in man: Efficacy of the oxime in poisoning by organophosphorus insecticides. Human & Experimental Toxicology, 10(2), 113–118.

    Article  CAS  Google Scholar 

  • Luo, C., Saxena, A., Smith, M., Garcia, G., Radić, Z., Taylor, P., & Doctor, B. P. (1999). Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium. Biochemistry, 38(31), 9937–9947.

    Article  CAS  Google Scholar 

  • Main, A. R. (1979). Mode of action of anticholinesterases. Pharmacology & Therapeutics, 6(3), 579–628.

    Article  CAS  Google Scholar 

  • Modica, E., Zanaletti, R., Freccero, M., & Mella, M. (2001). Alkylation of amino acids and glutathione in water by o-quinone methide. Reactivity and selectivity. The Journal of Organic Chemistry, 66(1), 41–52.

    Article  CAS  Google Scholar 

  • Mumford, H., Docx, C. J., Price, M. E., Green, A. C., Tattersall, J. E. H., & Armstrong, S. J. (2013). Human plasma-derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning. Chemico-Biological Interactions, 203(1), 160–166.

    Article  CAS  Google Scholar 

  • Nachon, F., Brazzolotto, X., Trovaslet, M., & Masson, P. (2013). Progress in the development of enzyme-based nerve agent bioscavengers. Chemico-Biological Interactions, 206(3), 536–544.

    Article  CAS  Google Scholar 

  • Ordentlich, A., Barak, D., Kronman, C., Benschop, H. P., De Jong, L. P. A., Ariel, N., Barak, R., Segall, Y., Velan, B., & Shafferman, A. (1999). Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers. Biochemistry, 38(10), 3055–3066.

    Article  CAS  Google Scholar 

  • Pang, Z., Hu, C.-M. J., Fang, R. H., Luk, B. T., Gao, W., Wang, F., Chuluun, E., Angsantikul, P., Thamphiwatana, S., Lu, W., Jiang, X., & Zhang, L. (2015). Detoxification of organophosphate poisoning using nanoparticle bioscavengers. ACS Nano, 9(6), 6450–6458. https://doi.org/10.1021/acsnano.5b02132

    Article  CAS  Google Scholar 

  • Pashirova, T. N., Braïki, A., Zueva, I. V., Petrov, K. A., Babaev, V. M., Burilova, E. A., Samarkina, D. A., Rizvanov, I. K., Souto, E. B., & Jean, L. (2018). Combination delivery of two oxime-loaded lipid nanoparticles: Time-dependent additive action for prolonged rat brain protection. Journal of Controlled Release, 290, 102–111.

    Article  CAS  Google Scholar 

  • Pashirova, T. N., Zueva, I. V., Petrov, K. A., Lukashenko, S. S., Nizameev, I. R., Kulik, N. V., Voloshina, A. D., Almasy, L., Kadirov, M. K., & Masson, P. (2018). Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids and Surfaces B: Biointerfaces, 171, 358–367.

    Article  CAS  Google Scholar 

  • Radić, Z., Sit, R. K., Garcia, E., Zhang, L., Berend, S., Kovarik, Z., Amitai, G., Fokin, V. V, Sharpless, K. B., & Taylor, P. (2013). Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates. Chemico-Biological Interactions, 203(1), 67–71.

    Google Scholar 

  • Raveh, L., Grauer, E., Grunwald, J., Cohen, E., & Ashani, Y. (1997). The stoichiometry of protection against soman and VX toxicity in monkeys pretreated with human butyrylcholinesterase. Toxicology and Applied Pharmacology, 145(1), 43–53.

    Article  CAS  Google Scholar 

  • Raveh, L., Grunwald, J., Marcus, D., Papier, Y., Cohen, E., & Ashani, Y. (1993). Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity: In vitro and in vivo quantitative characterization. Biochemical Pharmacology, 45(12), 2465–2474.

    Article  CAS  Google Scholar 

  • Restaino, O. F., Borzacchiello, M. G., Scognamiglio, I., Porzio, E., Manco, G., Fedele, L., Donatiello, C., De Rosa, M., & Schiraldi, C. (2017). Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination. Journal of Industrial Microbiology and Biotechnology, 44(3), 363–375.

    Article  CAS  Google Scholar 

  • Rochu, D., Chabriere, E., & Masson, P. (2007). Human paraoxonase: A promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology, 233(1–3), 47–59.

    Article  CAS  Google Scholar 

  • Rosenberg, Y. J., Saxena, A., Sun, W., Jiang, X., Chilukuri, N., Luo, C., Doctor, B. P., & Lee, K. D. (2010). Demonstration of in vivo stability and lack of immunogenicity of a polyethyleneglycol-conjugated recombinant CHO-derived butyrylcholinesterase bioscavenger using a homologous macaque model. Chemico-Biological Interactions, 187(1–3), 279–286.

    Article  CAS  Google Scholar 

  • Rosenstock, L., Keifer, M., Daniell, W. E., McConnell, R., Claypoole, K., & Group, P. H. E. S. (1991). Chronic central nervous system effects of acute organophosphate pesticide intoxication. The Lancet, 338(8761), 223–227.

    Article  CAS  Google Scholar 

  • Saxena, A., Sun, W., Luo, C., Myers, T. M., Koplovitz, I., Lenz, D. E., & Doctor, B. P. (2006). Bioscavenger for protection from toxicity of organosphosphorus compounds. Journal of Molecular Neuroscience, 30(1–2), 145–147.

    Article  CAS  Google Scholar 

  • Smith, P. N., Mao, L., Sinha, K., & Russell, A. J. (2021). Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomaterialia, 124, 270–281.

    Article  CAS  Google Scholar 

  • Wille, T., Neumaier, K., Koller, M., Ehinger, C., Aggarwal, N., Ashani, Y., Goldsmith, M., Sussman, J. L., Tawfik, D. S., & Thiermann, H. (2016). Single treatment of VX poisoned Guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection. Toxicology Letters, 258, 198–206.

    Article  CAS  Google Scholar 

  • Wong, L., Radić, Z., Brüggemann, R. J. M., Hosea, N., Berman, H. A., & Taylor, P. (2000). Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis. Biochemistry, 39(19), 5750–5757.

    Article  CAS  Google Scholar 

  • Worek, F., & Thiermann, H. (2013). The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacology & Therapeutics, 139(2), 249–259.

    Article  CAS  Google Scholar 

  • Worek, F., Thiermann, H., & Wille, T. (2016). Oximes in organophosphate poisoning: 60 years of hope and despair. Chemico-Biological Interactions, 259, 93–98.

    Article  CAS  Google Scholar 

  • Yoder, R. J., Zhuang, Q., Beck, J. M., Franjesevic, A., Blanton, T. G., Sillart, S., Secor, T., Guerra, L., Brown, J. D., & Reid, C. (2017). Study of Para-Quinone Methide precursors toward the Realkylation of aged acetylcholinesterase. ACS Medicinal Chemistry Letters, 8(6), 622–627.

    Article  CAS  Google Scholar 

  • Zueva, I. V., Lushchekina, S. V., & Masson, P. (2018). Water structure changes in oxime-mediated reactivation process of phosphorylated human acetylcholinesterase. Bioscience Reports, 38(3), BSR20180609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjan, A., **dal, T. (2022). Management and Modulation of Cholinesterase. In: Toxicology of Organophosphate Poisoning. Springer, Cham. https://doi.org/10.1007/978-3-030-79128-5_4

Download citation

Publish with us

Policies and ethics

Navigation