Restoration of Carious Hard Dental Tissues

  • Chapter
  • First Online:
Pediatric Dentistry

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 2193 Accesses

Abstract

This chapter deals with repair of the destructive effects of dental caries, i.e., the restoration of primary and young permanent teeth. For better understanding of techniques and materials used in the growing child with a changing dentition, restorative caries management is presented by age group, i.e., up to 3 years, 3 to 6, 6 to 12, and 12 to 18 years. There is focus on restoring teeth with the most frequently used restorative techniques and materials per age group. It devotes a special section on rubber dam isolation in children and other accessories for successful restorations. It does so again for the suitability of each category of restorative materials like enamel and dentin adhesives, resin-based composites, glass-ionomer cements, dental amalgam, and preformed crowns on both dentitions and for different restoration types, including approaches to teeth with developmental defects. The chapter ends with a section on restoration repair and new developments on dental biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Academy of Pediatric Dentistry. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. Reference manual 2018-19. Pediatr Dent. 2016;40(6):60–2.

    Google Scholar 

  2. Vadiakas G. Case definition, aetiology and risk assessment of early childhood caries (ECC): a revisited review. Eur Arch Paediatr Dent. 2008;9(3):114–25.

    Article  PubMed  Google Scholar 

  3. Owen ML, Ghanim A, Elsby D, Manton DJ. Hypomineralized second primary molars: prevalence, defect characteristics and relationship with dental caries in Melbourne preschool children. Aust Dent J. 2018;63(1):72–80. https://doi.org/10.1111/adj.12567.

    Article  PubMed  Google Scholar 

  4. Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries--a proposed definition. J Dent Res. 2012;91(6):544–50. https://doi.org/10.1177/0022034512444929.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peres KG, Nascimento GG, Peres MA, Mittinty MN, Demarco FF, Santos IS, et al. Impact of Prolonged Breastfeeding on Dental Caries: A Population-Based Birth Cohort Study. Pediatrics. 2017;140(1):e20162943. https://doi.org/10.1542/peds.2016-2943.

    Article  PubMed  Google Scholar 

  6. Adeniyi AA, Ogunbodede OE, Jeboda OS, Folayan OM. Do maternal factors influence the dental health status of Nigerian pre-school children? Int J Paediatr Dent. 2009;19:448–54.

    Article  Google Scholar 

  7. Dogar F, Kruger E, Dyson K, Tennant M. Oral health of pre-school children in rural and remote Western Australia. Rural Remote Health. 2011;11(4):1869.

    PubMed  Google Scholar 

  8. European Academy of Paediatric Dentistry. Guidelines on prevention of early childhood caries: An EAPD Policy Document. 2008. https://www.eapd.eu/uploads/1722F50D_file.pdf. Accessed 8 Jan 2019.

  9. American Academy of Pediatric Dentistry. Policy on Early Childhood Caries (ECC): unique challenges and treatment options. Reference manual 2018-19. Pediatr Dent. 2016;40(6):63–4.

    Google Scholar 

  10. American Academy of Pediatric Dentistry. Pediatric restorative dentistry. Reference manual 2018–19. 40(6):330–342.

    Google Scholar 

  11. Frencken JE, Leal SC, Navarro MF. Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview. Clin Oral Investig. 2012;16(5):1337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kemoli AM, Opinya GN, van Amerongen WE, Mwalili SM. Two-year survival rates of proximal atraumatic restorative treatment restorations in relation to glass ionomer cements and postrestoration meals consumed. Pediatr Dent. 2011;33(3):246–51.

    PubMed  Google Scholar 

  13. Amarante E, Raadal M, Espelid I. Impact of diagnostic criteria on the prevalence of dental caries in Norwegian children aged 5, 12 and 18 years. Community Dent Oral Epidemiol. 1998;26(2):87–94.

    Article  PubMed  Google Scholar 

  14. Celiberti P, Francescut P, Lussi A. Performance of four dentine excavation methods in deciduous teeth. Caries Res. 2006;40(2):117–23.

    Article  PubMed  Google Scholar 

  15. Hickel R, Kaaden C, Paschos E, et al. Longevity of occlusally-stressed restorations in posterior primary teeth. Am J Dent. 2005;18(3):198–211.

    PubMed  Google Scholar 

  16. Kotsanos N, Arizos S. Evaluation of a resin modified glass ionomer serving both as indirect pulp therapy and as restorative material for primary molars. Eur Arch Paediatr Dent. 2011;12(3):170–5.

    Article  PubMed  Google Scholar 

  17. Atieh M. Stainless steel crown versus modified open-sandwich restorations for primary molars: a 2-year randomized clinical trial. Int J Paediatr Dent. 2008;18(5):325–32.

    Article  PubMed  Google Scholar 

  18. van Dijken JW, Kieri C, Carlén M. Longevity of extensive class II open-sandwich restorations with a resin-modified glass-ionomer cement. J Dent Res. 1999;78(7):1319–25.

    Article  PubMed  Google Scholar 

  19. Roberts JF, Attari N, Sherriff M. The survival of resin modified glass ionomer and stainless steel crown restorations in primary molars, placed in a specialist paediatric dental practice. Br Dent J. 2005;198(7):427–31.

    Article  PubMed  Google Scholar 

  20. Koleventi A, Sakellari D, Arapostathis KN, Kotsanos N. Periodontal impact of preformed metal crowns on permanent molars of children and adolescents: a pilot study. Pediatr Dent. 2018;40(2):117–21.

    PubMed  Google Scholar 

  21. Seale NS, Randall R. The use of stainless steel crowns: a systematic literature review. Pediatr Dent. 2015;37(2):145–60.

    PubMed  Google Scholar 

  22. Innes NP, Evans DJ, Stirrups DR. Sealing caries in primary molars: randomized control trial, 5-year results. J Dent Res. 2011;90(12):1405–10.

    Article  PubMed  Google Scholar 

  23. Innes NP, Marshman Z, Vendan RE. A group of general dental practitioners' views of preformed metal crowns after participation in the hall technique clinical trial: a mixed-method evaluation. Prim Dent Care. 2010;17(1):33–7.

    Article  PubMed  Google Scholar 

  24. Page LA, et al. Acceptability of the hall technique to parents and children. N Z Dent J. 2014;110(1):12–7.

    PubMed  Google Scholar 

  25. Banihani A, Duggal M, Toumba J, Deery C. Outcomes of the conventional and biological treatment approaches for the management of caries in the primary dentition. Int J Paediatr Dent. 2018;28:12–22.

    Article  PubMed  Google Scholar 

  26. Kupietzky A. Bonded resin composite strip crowns for primary incisors: clinical tips for a successful outcome. Pediatr Dent. 2002;24(2):145–8.

    PubMed  Google Scholar 

  27. Hansen NV, Nyvad B. Non-operative control of cavitated approximal caries lesions in primary molars: a prospective evaluation of cases. J Oral Rehabil. 2017;44(7):537–44. https://doi.org/10.1111/joor.12508.

    Article  PubMed  Google Scholar 

  28. Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res. 1989;68(5):773–9.

    Article  PubMed  Google Scholar 

  29. Feigal RJ. Sealants and preventive restorations: review of effectiveness and clinical changes for improvement. Pediatr Dent. 1998;20(2):85–92.

    PubMed  Google Scholar 

  30. Freedman G, Goldstep F, Seif T. Ultraconservative resin restorations. "watch and wait" is not acceptable treatment. Dent Today. 2000;19(1):66–8; 70-3.

    PubMed  Google Scholar 

  31. Mertz-Fairhurst EJ, Curtis JW Jr, Ergle JW, et al. Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc. 1998;129(1):55–66.

    Article  PubMed  Google Scholar 

  32. Borges BC, de Souza BJ, Braz R, et al. Arrest of non-cavitated dentinal occlusal caries by sealing pits and fissures: a 36-month, randomised controlled clinical trial. Int Dent J. 2012;62(5):251–5.

    Article  PubMed  Google Scholar 

  33. Schwendicke F, Frencken J, Innes N. Clinical recommendations on carious tissue removal in Cavitated Lesions. Monogr Oral Sci. 2018;27:162–6. https://doi.org/10.1159/000487843.

    Article  PubMed  Google Scholar 

  34. Bekes K (ed). Pit and fissure sealants. Springer, 2018

    Google Scholar 

  35. Kotlow L. Lasers and pediatric dental care. Gen Dent. 2008;56(7):618–27.

    PubMed  Google Scholar 

  36. Olivi G, Genovese MD. Laser restorative dentistry in children and adolescents. Eur Arch Paediatr Dent. 2011;12(2):68–78.

    Article  PubMed  Google Scholar 

  37. Welbury RR, Walls AWG, Murray JJ, McCabe JR. The management of occlusal caries in permanent molars. A 5 years clinical trial comparing minimal composite with an amalgam restoration. Br Dent J. 1990;169:361–6.

    Article  PubMed  Google Scholar 

  38. Houpt M, Fuks A, Eidelman E. Composite/sealant restoration: 6 ½ year results. Pediatr Dent. 1988;10(4):304–6.

    PubMed  Google Scholar 

  39. Durmus N, Tok YT, Kaya S, Akcay M. Effectiveness of the ozone application in two-visit indirect pulp therapy of permanent molars with deep carious lesion: a randomized clinical trial. Clin Oral Investig. 2019. https://doi.org/10.1007/s00784-019-02808-0.

  40. Shwartz M, Gröndahl HG, Pliskin JS, Boffa J. A longitudinal analysis from bite-wing radiographs of the rate of progression of approximal carious lesions through human dental enamel. Arch Oral Biol. 1984;29(7):529–36.

    Article  PubMed  Google Scholar 

  41. Kotsanos N, Darling AI. Influence of posteruptive age of enamel on its susceptibility to artificial caries. Caries Res. 1991;25(4):241–50.

    Article  PubMed  Google Scholar 

  42. Mejàre I, Källest LC, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: A prospective radiographic study. Caries Res. 1999;33(2):93–100.

    Article  PubMed  Google Scholar 

  43. Qvist V, Johannessen L, Bruun M. Progression of approximal caries in relation to iatrogenic preparation damage. J Dent Res. 1992;71(7):1370–3.

    Article  PubMed  Google Scholar 

  44. Lopatiene K, Borisovaite M, Lapenaite E. Prevention and treatment of white spot lesions during and after treatment with fixed orthodontic appliances: a systematic literature review. J Oral Maxillofac Res. 2016;7(2):e1. https://doi.org/10.5037/jomr.2016.7201.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meyer-Lueckel H, Bitter K, Paris S. Randomized controlled clinical trial on proximal caries infiltration: three-year follow-up. Caries Res. 2012;6:544–8.

    Article  Google Scholar 

  46. Schwendicke F, Meyer-Lueckel H, Stolpe M, et al. Costs and effectiveness of treatment alternatives for proximal caries lesions. PLoS One. 2014;9(1):e86992.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martignon S, Ekstrand KR, Gomez J, Lara JS, Cortes A. Infiltrating/sealing proximal caries lesions: a 3-year randomized clinical trial. J Dent Res. 2012;91(3):288–92. https://doi.org/10.1177/0022034511435328.

    Article  PubMed  Google Scholar 

  48. Hörsted-Bindslev P, Heyde-Petersen B, Simonsen P, Baelum V. Tunnel or saucer-shaped restorations: a survival analysis. Clin Oral Investig. 2005;9(4):233–8.

    Article  PubMed  Google Scholar 

  49. Nordbø H, Leirskar J, von der Fehr FR. Saucer-shaped cavity preparations for posterior approximal resin composite restorations: observations up to 10 years. Quintessence Int. 1998;29(1):5–11.

    PubMed  Google Scholar 

  50. Knight GT, Berry TG, Barghi N, Burns TR. Effects of two methods of moisture control on marginal microleakage between resin composite and etched enamel: a clinical study. Int J Prosthodont. 1993;6:475–9.

    PubMed  Google Scholar 

  51. Carrotte P. Endodontics: part 6. Rubber dam and access cavities. Br Dent J. 2004;197:527–34.

    Article  PubMed  Google Scholar 

  52. Kremers L, Halbach S, Willruth H, et al. Effect of rubber dam on mercury exposure during amalgam removal. Eur J Oral Sci. 1999;107:202–7.

    Article  PubMed  Google Scholar 

  53. Samaranayake LP, Reid J, Evans D. The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination. ASDC J Dent Child. 1989;56:442–4.

    PubMed  Google Scholar 

  54. Cohen EN, Brown BW Jr, Bruce DL, Cascorbi HF, Corbett TH, Jones TW, Whitcher CE. A survey of anesthetic health hazards among dentists. J Am Dent Assoc. 1975;90:1291–6.

    Article  PubMed  Google Scholar 

  55. Summit JB, Robbins W, Schwartz RS. Fundamentals of operative dentistry: a contemporary approach. 1st ed. Batavia: Illinois Quintessence Publications Co Inc; 2001. p. 149.

    Google Scholar 

  56. Pontes DG, Guedes-Neto MV, Cabral MF, Cohen-Carneiro F. Microleakage evaluation of class V restorations with conventional and resin-modified glass ionomer cements. Oral Health Dent Manag. 2014;13(3):642–6.

    PubMed  Google Scholar 

  57. Banomyong D, Messer H. Two-year clinical study on postoperative pulpal complications arising from the absence of a glass-ionomer lining in deep occlusal resin-composite restorations. J Investig Clin Dent. 2013;4(4):265–70. https://doi.org/10.1111/j.2041-1626.2012.00160.x.

    Article  PubMed  Google Scholar 

  58. da Rosa WLO, Lima VP, Moraes RR, Piva E, da Silva AF. Is a calcium hydroxide liner necessary in the treatment of deep caries lesions? A systematic review and meta-analysis. Int Endod J. 2018. https://doi.org/10.1111/iej.13034.

  59. Corralo DJ, Maltz M. Clinical and ultrastructural effects of different liners/restorative materials on deep carious dentin: a randomized clinical trial. Caries Res. 2013;47(3):243–50. https://doi.org/10.1159/000345648.

    Article  PubMed  Google Scholar 

  60. Opal S, Garg S, Sharma D, Dhindsa A, Jatana I. In vivo effect of calcium hydroxide and resin-modified glass ionomer cement on carious dentin in young permanent molars: an ultrastructural and macroscopic study. Pediatr Dent. 2017;39(1):1–8.

    PubMed  Google Scholar 

  61. Takai T, Hosaka K, Kambara K, Thitthaweerat S, Matsui N, Takahashi M, et al. Effect of air-drying dentin surfaces on dentin bond strength of a solvent-free one-step adhesive. Dent Mater J. 2012;31(4):558–63.

    Article  PubMed  Google Scholar 

  62. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27(1):1–16. https://doi.org/10.1016/j.dental.2010.10.016.

    Article  PubMed  Google Scholar 

  63. Seseogullari-Dirihan R, Apollonio F, Mazzoni A, Tjaderhane L, Pashley D, Breschi L, Tezvergil-Mutluay A. Use of crosslinkers to inactivate dentin MMPs. Dent Mater. 2016;32(3):423–32. https://doi.org/10.1016/j.dental.2015.12.012.

    Article  PubMed  Google Scholar 

  64. Sabatini C, Scheffel DL, Scheffel RH, Agee KA, Rouch K, Takahashi M, et al. Inhibition of endogenous human dentin MMPs by Gluma. Dent Mater. 2014;30(7):752–8. https://doi.org/10.1016/j.dental.2014.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Agostini FG, Kaaden C, Powers JM. Bond strength of self-etching primers to enamel and dentin of primary teeth. Pediatr Dent. 2001;23(6):481–6.

    PubMed  Google Scholar 

  66. Dionysopoulos P, Kotsanos N, Pataridou A. Fluoride release and uptake by four new fluoride releasing restorative materials. J Oral Rehabil. 2003;30(9):866–72.

    Article  PubMed  Google Scholar 

  67. Croll TP, Nicholson JW. Glass ionomer cements in pediatric dentistry: review of the literature. Pediatr Dent. 2002;24(5):423–9.

    PubMed  Google Scholar 

  68. Qvist V, Laurberg L, Poulsen A, Teglers PT. Eight-year study on conventional glass ionomer and amalgam restorations in primary teeth. Acta Odontol Scand. 2004;62(1):37–45.

    Article  PubMed  Google Scholar 

  69. Mount GJ. An atlas of glass- ionomer cements; A clinician’’s guide. 3rd ed. London: Martin Dunitz; 2002.

    Google Scholar 

  70. Hübel S, Mejàre I. Conventional versus resin-modified glass-ionomer cement for class II restorations in primary molars. A 3-year clinical study. Int J Paediatr Dent. 2003;13(1):2–8.

    Article  PubMed  Google Scholar 

  71. Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016; 7(3): 16. Published online 2016 Jun 28. https://doi.org/10.3390/jfb7030016.

  72. Donly KJ, Segura A, Kanellis M, Erickson RL. Clinical performance and caries inhibition of resin-modified glass ionomer cement and amalgam restorations. J Am Dent Assoc. 1999;130(10):1459–66.

    Article  PubMed  Google Scholar 

  73. Chadwick BL, Evans DJ. Restoration of class II cavities in primary molar teeth with conventional and resin modified glass ionomer cements: a systematic review of the literature. Eur Arch Paediatr Dent. 2007;8(1):14–21.

    Article  PubMed  Google Scholar 

  74. Perdigão J, Dutra-Corrêa M, Saraceni SH, Ciaramicoli MT, Kiyan VH. Randomized clinical trial of two resin-modified glass ionomer materials: 1-year results. Oper Dent. 2012;37(6):591–601. https://doi.org/10.2341/11-415-C.

    Article  PubMed  Google Scholar 

  75. Vance M, Lawson NC, Rupal M, Beck P, Burgess JO. Color and gloss of Nano-filled resin-modified glass ionomers and resin composites. J Esthet Restor Dent. 2015;27(5):293–9. https://doi.org/10.1111/jerd.12118.

    Article  PubMed  Google Scholar 

  76. Andersson-Wenckert IE, van Dijken JW, Kieri C. Durability of extensive class II open-sandwich restorations with a resin-modified glass ionomer cement after 6 years. Am J Dent. 2004;17(1):43–50.

    PubMed  Google Scholar 

  77. Fragkou S, Nikolaidis A, Tsiantou D, Achilias D, Kotsanos N. Tensile bond characteristics between composite resin and resin-modified glass-ionomer restoratives used in the open-sandwich technique. Eur Arch Paediatr Dent. 2013;14(4):239–45. https://doi.org/10.1007/s40368-013-0055-2.

    Article  PubMed  Google Scholar 

  78. Kotsanos N. An intraoral study of caries induced on enamel in contact with fluoride-releasing restorative materials. Caries Res. 2001;35(3):200–4.

    Article  PubMed  Google Scholar 

  79. Raggio DP, Tedesco TK, Calvo AF, Braga MM. Do glass ionomer cements prevent caries lesions in margins of restorations in primary teeth?: a systematic review and meta-analysis. J Am Dent Assoc. 2016;147(3):177–85.

    Article  PubMed  Google Scholar 

  80. Tedesco TK, Bonifácio CC, Calvo AF, Gimenez T, Braga MM, Raggio DP. Caries lesion prevention and arrestment in approximal surfaces in contact with glass ionomer cement restorations - a systematic review and meta-analysis. Int J Paediatr Dent. 2016;26(3):161–72.

    Article  PubMed  Google Scholar 

  81. Breschi M, Fabiani D, Sandrolini L, Colonna M, Sisti L, Vannini M, et al. Electrical properties of resin monomers used in restorative dentistry. Dent Mater. 2012;28(9):1024–31. https://doi.org/10.1016/j.dental.2012.05.009.

    Article  PubMed  Google Scholar 

  82. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent. 1996;21(1):17–24.

    PubMed  Google Scholar 

  83. Oldenburg TR, Vann WF Jr, Dilley DC. Comparison of composite and amalgam in posterior teeth of children. Dent Mater. 1987;3(4):182–6.

    Article  PubMed  Google Scholar 

  84. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;29(6):605–17. https://doi.org/10.1016/j.dental.2013.02.003.

    Article  PubMed  Google Scholar 

  85. Soares LE, Liporoni PC, Martin AA. The effect of soft-start polymerization by second generation LEDs on the degree of conversion of resin composite. Oper Dent. 2007;32(2):160–5.

    Article  PubMed  Google Scholar 

  86. Drost T, Reimann S, Frentzen M, Meister J. Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci. 2019;34(4):729–36. https://doi.org/10.1007/s10103-018-2651-1.

    Article  PubMed  Google Scholar 

  87. Ganss C, Jung M. Effect of eugenol-containing temporary cements on bond strength of composite to dentin. Oper Dent. 1998;23(2):55–62.

    PubMed  Google Scholar 

  88. Eliades G, Kakaboura A, Palaghias G. Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dent Mater. 1998;14(1):57–63.

    Article  PubMed  Google Scholar 

  89. Krämer N, Frankenberger R. Compomers in restorative therapy of children: a literature review. Int J Paediatr Dent. 2007;17(1):2–9.

    Article  PubMed  Google Scholar 

  90. Marks LA, Faict N, Welbury RR. Literature review: restorations of class II cavities in the primary dentition with compomers. Eur Arch Paediatr Dent. 2010;11(3):109–14.

    Article  PubMed  Google Scholar 

  91. Papagiannoulis L, Kakaboura A, Pantaleon F, Kavvadia K. Clinical evaluation of a polyacid-modified resin composite (compomer) in class II restorations of primary teeth: a two-year follow-up study. Pediatr Dent. 1999;21(4):231–4.

    PubMed  Google Scholar 

  92. Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. Bisphenol a and related compounds in dental materials. Pediatrics. 2010;126(4):760–8. https://doi.org/10.1542/peds.2009-2693.

    Article  PubMed  Google Scholar 

  93. Maserejian NN, Trachtenberg FL, Hauser R, et al. Dental composite restorations and neuropsychological development in children: treatment level analysis from a randomized clinical trial. Neurotoxicology. 2012;33(5):1291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Maserejian NN, Shrader P, Brown OA, et al. Dental sealants and composite restorations and longitudinal changes in immune function markers in children. Int J Paediatr Dent. 2014;24(3):215–25.

    Article  PubMed  Google Scholar 

  95. Roberts JF, Sherriff M. The fate and survival of amalgam and preformed crown molar restorations placed in a specialist paediatric dental practice. Br Dent J. 1990;169(8):237–44.

    Article  PubMed  Google Scholar 

  96. Randall RC, Vrijhoef MA, Wilson NH. Efficacy of preformed metal crowns vs amalgam restorations in primary molars: a systematic review. J Am Dent Assoc. 2000;131(3):337–43.

    Article  PubMed  Google Scholar 

  97. Peretz B, Ram D. Restorative material for children's teeth: preferences of parents and children. ASDC J Dent Child. 2002;69(3):243–8, 233.

    PubMed  Google Scholar 

  98. Espelid I, Cairns J, Askildsen JE, Qvist V, et al. Preferences over dental restorative materials among young patients and dental professionals. Eur J Oral Sci. 2006;114(1):15–21.

    Article  PubMed  Google Scholar 

  99. Seale NS. The use of stainless steel crowns. Pediatr Dent. 2002;24(5):501–5.

    PubMed  Google Scholar 

  100. Keinan D, Mass E, Zilberman U. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns. Int J Dent. 2010;2010:326124. https://doi.org/10.1155/2010/326124.

    Article  PubMed  Google Scholar 

  101. Ramazani N, Ahmadi R, Darijani M. Assessment of nickel release from stainless steel crowns. J Dent (Tehran). 2014;11(3):328–34.

    Google Scholar 

  102. Oueis H, Atwan S, Pajtas B, Casamassimo P. Use of anterior veneered stainless steel crowns by pediatric dentists. Pediatr Dent. 2010;32(5):413–6.

    PubMed  Google Scholar 

  103. Leith R, O’Connell AC. A clinical study evaluating success of 2 commercially available preveneered primary molar stainless steel crowns. Pediatr Dent. 2011;33(4):300–6.

    PubMed  Google Scholar 

  104. Donly KJ, Sasa I, Contreras CI, Mendez MJC. Prospective randomized clinical trial of primary molar crowns: 24-month results. Pediatr Dent. 2018;40(4):253–8.

    PubMed  Google Scholar 

  105. Wendt LK, Koch G, Birkhed D. Replacements of restorations in the primary and young permanent dentition. Swed Dent J. 1998;22(4):149–55.

    PubMed  Google Scholar 

  106. Chrysanthakopoulos NA. Placement, replacement and longevity of composite resin-based restorations in permanent teeth in Greece. Int Dent J. 2012;62(3):161–6.

    Article  PubMed  Google Scholar 

  107. Maupomé G, Sheiham A. Criteria for restoration replacement and restoration life-span estimates in an educational environment. J Oral Rehabil. 1998;25(12):896–901.

    Article  PubMed  Google Scholar 

  108. Gordan VV, Riley JL 3rd, Geraldeli S, et al. Repair or replacement of defective restorations by dentists in the dental practice-based research network. J Am Dent Assoc. 2012;143(6):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Balhaddad AA, Kansara AA, Hidan D, Weir MD, Xu HHK. Melo MAS. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact Mater. 2018;4(1):43–55. https://doi.org/10.1016/j.bioactmat.2018.12.002. eCollection 2019 Mar. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Watson PS, Pontefract HA, Devine DA, et al. Penetration of fluoride into natural plaque biofilms. J Dent Res. 2005;84(5):451–5.

    Article  PubMed  Google Scholar 

  111. Lansdown A. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.

    Article  PubMed  Google Scholar 

  112. Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459–67.

    Article  PubMed  Google Scholar 

  113. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  PubMed  Google Scholar 

  114. Chatzistavrou X, Lefkelidou A, Papadopoulou L, Pavlidou E, Paraskevopoulos KM, Fenno JC, et al. Bactericidal and bioactive dental composites. Front Physiol. 2018;9:103. https://doi.org/10.3389/fphys.2018.00103.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Imazato S, Chen JH, Ma S, et al. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48:115–25.

    Article  Google Scholar 

  116. Zhang K, Cheng L, Wu EJ, et al. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate. J Dent. 2013;41(6):504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tanaka CB, Lopes DP, Kikuchi LNT, Moreira MS, Catalani LH, Braga RR, Kruzic JJ, Gonçalves F. Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dent Mater. 2020;36(4):551–9. https://doi.org/10.1016/j.dental.2020.02.004.

    Article  PubMed  Google Scholar 

  118. Hoxha A, Gillam DG, Agha A, Karpukhina N, Bushby AJ, Patel MP. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36(8):973–86. https://doi.org/10.1016/j.dental.2020.04.011.

    Article  PubMed  Google Scholar 

  119. Al-Eesa NA, Wong FSL, Johal A, Hill RG. Fluoride containing bioactive glass composite for orthodontic adhesives - ion release properties. Dent Mater. 2017;33(11):1324–9. https://doi.org/10.1016/j.dental.2017.08.185.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kotsanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotsanos, N., Wong, F. (2022). Restoration of Carious Hard Dental Tissues. In: Kotsanos, N., Sarnat, H., Park, K. (eds) Pediatric Dentistry. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-78003-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78003-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78002-9

  • Online ISBN: 978-3-030-78003-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation