Diagnostic Evaluation of Dementia

  • Chapter
  • First Online:
Management of Patients with Dementia
  • 1072 Accesses

Abstract

Diagnosing dementia requires a multiprofessional approach using an array of investigative methods. A diagnosis of dementia and identification of the underlying cause, when possible, is essential for providing the necessary and appropriate treatment and care in a timely manner, including counseling. History taking from both patient and carer is a cornerstone of the diagnostic process. Within recent years, advances in biomarkers have pushed these to the forefront of the diagnostic work-up of patients with presumed dementia. These include advances within structural and functional imaging as well as cerebrospinal fluid (CSF)-based biomarkers. This has enabled biomarker-based diagnosis and more accurate identification of the underlying cause, especially with respect to neurodegenerative diseases. Besides a more accurate diagnosis, the present chapter will outline the diagnostic process and work-up of patients suspected of dementia and the utility of the tools available to the clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44. https://doi.org/10.1212/wnl.34.7.939.

    Article  CAS  PubMed  Google Scholar 

  2. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1143–53. https://doi.org/10.1212/wnl.56.9.1143.

    Article  CAS  PubMed  Google Scholar 

  3. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28. https://doi.org/10.1016/S1474-4422(09)70299-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–58. https://doi.org/10.1016/j.neuron.2013.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Somers C, Struyfs H, Goossens J, Niemantsverdriet E, Luyckx J, De Roeck N, et al. A decade of cerebrospinal fluid biomarkers for Alzheimer’s Disease in Belgium. J Alzheimers Dis. 2016;54(1):383–95. https://doi.org/10.3233/JAD-151097.

    Article  CAS  PubMed  Google Scholar 

  6. Gossye H, Van Broeckhoven C, Engelborghs S. The use of biomarkers and genetic screening to diagnose frontotemporal dementia: evidence and clinical implications. Front Neurosci. 2019;13:757. https://doi.org/10.3389/fnins.2019.00757. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. Br Med J. 2019;367:l6217. https://doi.org/10.1136/bmj.l6217.

    Article  Google Scholar 

  8. Frederiksen KS, Nielsen TR, Winblad B, Schmidt R, Kramberger MG, Jones RW, et al. European Academy of Neurology/European Alzheimer’s Disease Consortium position statement on diagnostic disclosure, biomarker counseling, and management of patients with mild cognitive impairment. Eur J Neurol. 2020. doi: https://doi.org/10.1111/ene.14668.

  9. De Roeck EE, Engelborghs S, Dierckx E. Next generation brain health depends on early Alzheimer Disease diagnosis: from a timely diagnosis to future population screening. J Am Med Dir Assoc. 2016;17(5):452–3. https://doi.org/10.1016/j.jamda.2016.02.015.

    Article  PubMed  Google Scholar 

  10. Liss JL, Seleri Assunção S, Cummings J, Atri A, Geldmacher DS, Candela SF, et al. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med. 2021. doi: https://doi.org/10.1111/joim.13244.

  11. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9. https://doi.org/10.1016/j.jalz.2011.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wiels W, Baeken C, Engelborghs S. Depressive symptoms in the elderly-an early symptom of dementia? A systematic review. Front Pharmacol. 2020;11:34. https://doi.org/10.3389/fphar.2020.00034. eCollection 2020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Van der Mussele S, Fransen E, Struyfs H, Luyckx J, Mariën P, Saerens J, et al. Depression in mild cognitive impairment is associated with progression to Alzheimer’s disease: a longitudinal study. J Alzheimers Dis. 2014;42(4):1239–50. https://doi.org/10.3233/JAD-140405.

    Article  PubMed  Google Scholar 

  14. Vloeberghs R, Opmeer EM, De Deyn PP, Engelborghs S, De Roeck EE. Apathy, depression and cognitive functioning in patients with MCI and dementia. Tijdschrift Gerontologie Geriatrie. 2018;49(3):95–102. https://doi.org/10.1007/s12439-018-0248-6.

    Article  Google Scholar 

  15. Van der Mussele S, Mariën P, Saerens J, Somers N, Goeman J, De Deyn PP, et al. Psychosis associated behavioral and psychological signs and symptoms in mild cognitive impairment and Alzheimer’s dementia. Aging Ment Health. 2015;19(9):818–28. https://doi.org/10.1080/13607863.2014.967170.

    Article  PubMed  Google Scholar 

  16. Van der Mussele S, Mariën P, Saerens J, Somers N, Goeman J, De Deyn PP, et al. Behavioral syndromes in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2014;38(2):319–29. https://doi.org/10.3233/JAD-130596.

    Article  PubMed  Google Scholar 

  17. Van der Mussele S, Le Bastard N, Saerens J, Somers N, Mariën P, Goeman J, et al. Agitation-associated behavioral symptoms in mild cognitive impairment and Alzheimer’s dementia. Aging Ment Health. 2015;19(3):247–57. https://doi.org/10.1080/13607863.2014.924900.

    Article  PubMed  Google Scholar 

  18. Salmon DP, Bondi MW. Neuropsychological assessment of dementia. Annu Rev Psychol. 2009;60:257–82. https://doi.org/10.1146/annurev.psych.57.102904.190024.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Roeck E, De Deyn PP, Dierckx E, Engelborghs S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: a systematic review. Alzheimers Res Ther. 2019;11(21):1–14. https://doi.org/10.1186/s13195-019-0474-3.

    Article  Google Scholar 

  20. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  21. Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  22. Buschke H, Kuslansky G, Katz M, Stewart WF, Sliwinski MJ, Eckholdt HM, et al. Screening for dementia with the memory impairment screen. Neurology. 1999;52:231–8. https://doi.org/10.1212/wnl.52.2.231.

    Article  CAS  PubMed  Google Scholar 

  23. Carnero-Pardo C, Espejo-Martínez B, López-Alcalde S, Espinosa-García M, Sáez-Zea C, Hernández-Torres E, et al. Diagnostic accuracy, effectiveness and cost for cognitive impairment and dementia screening of three short cognitive tests applicable to illiterates. PLoS One. 2011;6:1–6. https://doi.org/10.1371/journal.pone.0027069.

    Article  CAS  Google Scholar 

  24. Wiig EH, Nielsen NP, Minthon L, et al. Alzheimer’s quick test: assessment of parietal function. Harcourt Assessment: San Antonio, TX; 2002.

    Google Scholar 

  25. O’Caoimh R, Gao Y, Gallagher PF, Eustace J, McGlade C, Molloy DW. Which part of the Quick mild cognitive impairment screen (Qmci) discriminates between normal cognition, mild cognitive impairment and dementia? Age Ageing. 2013;42:324–30. https://doi.org/10.1093/ageing/aft044.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Babacan-Yildiz G, Isik AT, Ur E, Aydemir E, Ertas C, Cebi MC, et al. OST: Cognitive State Test, a brief screening battery for Alzheimer disease in illiterate and literate patients. Int Psychogeriatr. 2013;25:403–12. https://doi.org/10.1017/S1041610212001780.

    Article  PubMed  Google Scholar 

  27. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

    Article  PubMed  Google Scholar 

  28. Mioshi E, Dawson K, Mitchell J. The Addenbrooke’s cognitive examination revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21:1078–85. https://doi.org/10.1002/gps.1610.

    Article  PubMed  Google Scholar 

  29. Mitchell AJ. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res. 2009;43(4):411–31.

    Article  PubMed  Google Scholar 

  30. Elwood RW. The California Verbal Learning Test: psychometric characteristics and clinical application. Neuropsychol Rev. 1995;5(3):173–201. https://doi.org/10.1007/BF02214761.

    Article  CAS  PubMed  Google Scholar 

  31. Hori T, Sanjo N, Tomita M, Mizusawa H. Visual reproduction on the Wechsler Memory Scale-Revised as a predictor of Alzheimer’s disease in Japanese patients with mild cognitive impairments. Dement Geriatr Cogn Disord. 2013;35(3–4):165–76. https://doi.org/10.1159/000346738.

    Article  PubMed  Google Scholar 

  32. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. 5th ed. New York: Oxford University Press; 2012.

    Google Scholar 

  33. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB. A frontal assessment battery at bedside. Neurology. 2000;55:1621–6. https://doi.org/10.1212/wnl.55.11.1621.

    Article  CAS  PubMed  Google Scholar 

  34. Sorbi S, Hort J, Erkinjuntti T, Fladby T, Gainotti G, Gurvit H, et al. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012;19:1159–79.

    Article  CAS  PubMed  Google Scholar 

  35. Chui H, Zhang Q. Evaluation of dementia: a systematic study of the usefulness of the American Academy of Neurology’s Practice Parameters. Neurology. 1997;49(4):925–35. https://doi.org/10.1212/WNL.49.4.925.

    Article  CAS  PubMed  Google Scholar 

  36. Frisoni GB, Rossi R, Beltramello A. The radial width of the temporal horn in mild cognitive impairment. J Neuroimaging. 2002;12(4):351–4. https://doi.org/10.1111/j.1552-6569.2002.tb00143.x.

    Article  PubMed  Google Scholar 

  37. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging. 2004;25(3):303–10. https://doi.org/10.1016/S0197-4580(03)00084-8.

    Article  PubMed  Google Scholar 

  38. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in ‘probable’ Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72. https://doi.org/10.1136/jnnp.55.10.967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ottoy J, Niemantsverdriet E, Verhaeghe J, De Roeck E, Struyfs H, Somers C, et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18 F-FDG-PET imaging. NeuroImage: Clin. 2019;22:101771. https://doi.org/10.1016/j.nicl.2019.101771.

    Article  Google Scholar 

  40. Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: a systematic review with meta-analysis. Alzheimer’s Dement. 2015;1(4):487–504. https://doi.org/10.1016/j.dadm.2015.11.002.

    Article  Google Scholar 

  41. Niemantsverdriet E, Ribbens A, Bastin C, Benoit F, Bergmans B, Bier JC, et al. A retrospective Belgian multi-center MRI biomarker study in Alzheimer’s Disease (REMEMBER). J Alzheimers Dis. 2018;63(4):1509–22. https://doi.org/10.3233/JAD-171140.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bosco P, Redolfi A, Bocchetta M, Ferrari C, Mega A, Galluzzi S, et al. The impact of automated hippocampal volumetry on diagnostic confidence in patients with suspected Alzheimer’s disease: a European Alzheimer’s Disease Consortium study. Alzheimers Dement. 2017;13(9):1013–23.

    Article  PubMed  Google Scholar 

  43. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.

    Article  PubMed  Google Scholar 

  44. Sabuncu MR, Desikan RS, Sepulcre J, Yeo BT, Liu H, Schmansky NJ, et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol. 2011;68(8):1040–8. https://doi.org/10.1001/archneurol.2011.167.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142(6):1503–27. https://doi.org/10.1093/brain/awz099.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wirth M, Villeneuve S, Haase CM, Madison CM, Oh H, Landau SM, et al. Associations between Alzheimer disease biomarkers, neurodegeneration, and cognition in cognitively normal older people. JAMA Neurol. 2013;70(12):1512–9. https://doi.org/10.1001/jamaneurol.2013.4013.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zarow C, Wang L, Chui HC, Weiner MW, Csernansky JG. MRI shows more severe hippocampal atrophy and shape deformation in hippocampal sclerosis than in Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:483972. https://doi.org/10.4061/2011/483972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van de Pol LA, Hensel A, van der Flier WM, Visser PJ, Pijnenburg YA, Barkhof F, et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(4):439–42. https://doi.org/10.1136/jnnp.2005.075341.

    Article  PubMed  Google Scholar 

  49. Laforce R Jr, Soucy JP, Sellami L, Dallaire-Théroux C, Brunet F, Bergeron D, et al. Molecular imaging in dementia: past, present, and future. Alzheimers Dement. 2018;14(11):1522–52. https://doi.org/10.1016/j.jalz.2018.06.2855.

    Article  PubMed  Google Scholar 

  50. Sala A, Caprioglio C, Santangelo R, Vanoli EG, Iannaccone S, Magnani G, et al. Brain metabolic signatures across the Alzheimer’s disease spectrum. Eur J Nucl Med Mol Imaging. 2020;47(2):256–69. https://doi.org/10.1007/s00259-019-04559-2.

    Article  PubMed  Google Scholar 

  51. Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26(4):627–45. https://doi.org/10.3233/JAD-2011-110,458.

    Article  CAS  PubMed  Google Scholar 

  52. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390–8. https://doi.org/10.2967/jnumed.107.045385.

    Article  PubMed  Google Scholar 

  53. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. J Am Med Assoc. 2001;286(17):2120–7. https://doi.org/10.1001/jama.286.17.2120.

    Article  CAS  Google Scholar 

  54. Jagust W, Reed B, Mungas D, Ellis W, DeCarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871–7. https://doi.org/10.1212/01.wnl.0000269790.05105.16.

    Article  CAS  PubMed  Google Scholar 

  55. Yousaf T, Dervenoulas G, Valkimadi PE, Politis M. Neuroimaging in Lewy body dementia. J Neurol. 2019;266(1):1–26. https://doi.org/10.1007/s00415-018-8892-x.

    Article  PubMed  Google Scholar 

  56. Shivamurthy VK, Tahari AK, Marcus C, Subramaniam RM. Brain FDG PET and the diagnosis of dementia. Am J Roentgenol. 2015;204(1):W76–85. https://doi.org/10.2214/AJR.13.12363.

    Article  Google Scholar 

  57. Salmon E, Bernard Ir C, Hustinx R. Pitfalls and limitations of PET/CT in brain imaging. Semin Nucl Med. 2015;45(6):541–51. https://doi.org/10.1053/j.semnuclmed.2015.03.008.

    Article  PubMed  Google Scholar 

  58. Fink HA, Linskens EJ, Silverman PC, McCarten JR, Hemmy LS, Ouellette JM, et al. Accuracy of biomarker testing for neuropathologically defined Alzheimer disease in older adults with dementia. Ann Intern Med. 2020;172(10):669–77.

    Article  PubMed  Google Scholar 

  59. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19. https://doi.org/10.1002/ana.20009.

    Article  CAS  PubMed  Google Scholar 

  60. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034–42. https://doi.org/10.1212/WNL.0b013e31823b9c5e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kantarci K, Lowe VJ, Chen Q, Przybelski SA, Lesnick TG, Schwarz CG, et al. β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology. 2020;94:e282–91. https://doi.org/10.1212/WNL.0000000000008818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. J Am Med Assoc. 2015;313(19):1939–49.

    Article  Google Scholar 

  63. La Joie R, Ayakta N, Seeley WW, Borys E, Boxer AL, DeCarli C, et al. Multi-site study of the relationships between ante mortem [11C]PIB-PET Centiloid values and post mortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 2019;15(2):205–16.

    Article  PubMed  Google Scholar 

  64. Duits FH, Martinez-Lage P, Paquet C, Engelborghs S, Lleó A, Hausner L, et al. Performance and complications of lumbar puncture in memory clinics: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement. 2016;12(2):154–63. https://doi.org/10.1016/j.jalz.2015.08.003.

    Article  PubMed  Google Scholar 

  65. Engelborghs S, Niemantsverdriet E, Struyfs H, Blennow K, Brouns R, Comabella M, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement. 2017;8:111–26. https://doi.org/10.1016/j.dadm.2017.04.007.

    Article  Google Scholar 

  66. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5(3):228–34. https://doi.org/10.1016/S1474-4422(06)70355-6.

    Article  CAS  PubMed  Google Scholar 

  67. Slaets S, Le Bastard N, Martin JJ, Sleegers K, Van Broeckhoven C, De Deyn PP, et al. Cerebrospinal fluid Aβ1–40 improves differential dementia diagnosis in patients with intermediate P-tau181P levels. J Alzheimers Dis. 2013;36(4):759–67. https://doi.org/10.3233/JAD-130107.

    Article  CAS  PubMed  Google Scholar 

  68. Niemantsverdriet E, Ottoy J, Somers C, De Roeck E, Struyfs H, Soetewey F, et al. The cerebrospinal fluid Aβ1–42/Aβ1–40 ratio improves concordance with amyloid-PET for diagnosing Alzheimer’s disease in a clinical setting. J Alzheimers Dis. 2017;60(2):561–76. https://doi.org/10.3233/JAD-170327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan Engelborghs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nous, A., Vyver, M.V., Wiels, W., Engelborghs, S. (2021). Diagnostic Evaluation of Dementia. In: Frederiksen, K.S., Waldemar, G. (eds) Management of Patients with Dementia. Springer, Cham. https://doi.org/10.1007/978-3-030-77904-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77904-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77903-0

  • Online ISBN: 978-3-030-77904-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation