Hilbert’s Axiomatisches Denken

  • Chapter
  • First Online:
Axiomatic Thinking I

Abstract

We discuss some aspects of the impact of Hilbert’s talk on Axiomatic Thinking in the development of modern mathematical logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See [7, p. 422]; Hilbert himself commented on this dead end in 1928 [35]: “Eine unglückliche Auffassung Poincarés, dieses Meisters mathematischer Erfindungskunst, betreffend den Schluss von n auf \(n+1\), eine Auffassung die überdies bereits zwanzig Jahre früher von Dedekind widerlegt war, verrammelte den Weg zum richtigen Vorwärtsschreiten.” English translation [39, p. 228]: “An unfortunate view of Poincaré concerning the inference from n to \(n+1\), which had already been refuted by Dedekind through a precise proof two decades earlier, barred the way to progress.”

  2. 2.

    See the footnote to the “first insight” in [9]:“Eine mündliche Erörterung der ersten Einsicht Herrn Hilbert gegenüber hat im Herbst 1909 in mehreren Unterhaltungen stattgefunden.” English translation [10, p. 491]: “An oral discussion of the first insight took place in several conversations I had with Hilbert in the autumn of 1909.”

  3. 3.

    Reid, mistakenly, dates this invitation to Hilbert’s visit in Zurich in spring.

  4. 4.

    See [34]. Hilbert’s enthusiasm for Cantor was already expressed in his obituary for his colleague and friend, Minkowski, with whom he had started his studies of set theory in Königsberg [32]: “[Minkowski] war der erste Mathematiker unserer Generation – und ich habe ihn darin nach Kräften unterstützt –, der die hohe Bedeutung der Cantorschen Theorie erkannte und zur Geltung zu bringen suchte.” English translation: “Minkowski was the first mathematician of our generation, who realized the high significance of Cantor’s theory and who sought to bring it to fruition—and I supported him diligently in this endeavor.”

  5. 5.

    Hilbert expressed this concern in a lecture of 1920 [33, p. 16]: “Insbesondere in der Mathematik, der wir doch die alte gerühmte absolute Sicherheit erhalten wollen, müssen Widersprüche ausgeschlossen werden.” English translation: “In particular in mathematics, for which we would like to retain the venerable vaunted absolute certainty, contradictions must be excluded.”

  6. 6.

    Hilbert commented in 1920 [33, p. 33] (published in [40, p. 363]): “Das Ziel, die Mengenlehre und damit die gebräuchlichen Methoden der Analysis auf die Logik zurückzuführen, ist heute nicht erreicht und ist vielleicht überhaupt nicht erreichbar.” English translation: “Today, the goal to reduce set theory and thereby the usual methods of analysis to logic is not attained, and it is possibly not attainable at all.” In 1928, he expressed it more pithily [36, p. 65]: “Die Mathematik wie jede andere Wissenschaft kann nie durch Logik allein begründet werden.” English translation: “Mathematics as any other science can never be founded by logic alone.”

  7. 7.

    See [50]. José Ferreirós, in his contribution to this volume, gives insight in the developments of axiomatics from Dedekind via Peano and Hilbert to Bourbaki [17, Chap. 6].

  8. 8.

    German original [35]: “Mit dieser Neubegründung der Mathematik, die man füglich als eine Beweistheorie bezeichnen kann, glaube ich die Grundlagenfragen in der Mathematik als solche endgültig aus der Welt zu schaffen, indem ich jede mathematische Aussage zu einer konkret aufweisbaren und streng ableitbaren Formel mache und dadurch den ganzen Fragenkomplex in die Domäne der reinen Mathematik versetze.”

  9. 9.

    English translation from [24, p. 237]; German original [23]: “Ein Hauptmerkmal des Hilbertschen Standpunkts scheint mir das Bestreben zu sein, das mathematische Grundlagenproblem der Philosophie zu entziehen und es soweit wie irgendmöglich mit den eigenen Hilfsmitteln der Mathematik zu behandeln.”

  10. 10.

    Nelson expressed his astonishment concerning Hilbert’s aim to reform logic in a letter to Hessenberg, June 1905, cited in [59, p. 166]: “Um den Widerspruch in der Mengenlehre zu beseitigen, will er [Hilbert] (nicht etwa die Mengenlehre sondern) die Logik reformieren.” English translation: “To eliminate the contradiction in set theory, [Hilbert] wants to reform (not set theory but) logic.”

  11. 11.

    See the textbook by Hilbert and Ackermann [42]; it is worth mentioning, that the technical elaboration is mainly due to Bernays.

  12. 12.

    This account profited a lot from previous work by Pasch.

  13. 13.

    In Hilbert’s own words [33, p. 16]: “Ein Widerspruch ist wie ein Bazillus, der alles vergiftet, wie ein Funke im Pulverfass, der alles vernichtet.” English translation: “A contradiction is like a bacillus, which poisons everything, as a spark in a powder barrel, which destroys everything.” For more on Hilbert’s discussion of the paradoxes, see [47].

  14. 14.

    The small roman numbers are added by us to simplify referencing.

  15. 15.

    50 years later, Bernays wrote an encyclopedia entry for “David Hilbert” [5, p. 500]. Obviously with the 1917 talk at hand, he recalled the given paragraph, however without mentioning (iii). We may take this as an indication that, by 1967, the question of formal proof-checking was considered solved.

  16. 16.

    See the discussion of inhaltliche and formale Axiomatik (contentual and formal axiomatics) at the beginning of [43], in particular [43, p. 2]: “Die formale Axiomatik bedarf der inhaltlichen notwendig als ihrer Ergänzung, weil durch diese überhaupt erst die Anleitung zur Auswahl der Formalismen und ferner für eine vorhandene formale Theorie auch erst die Anweisung zu ihrer Anwendung auf ein Gebiet der Tatsächlichkeit gegeben wird.” English translation [44, p. 2]: “Formal axiomatics requires contentual axiomatics as a necessary supplement. It is only the latter that provides us with some guidance for the choosing the right formalism, and with some instructions on how to apply a given formal theory to a domain of actuality.”

  17. 17.

    It is important to note that Hilbert was only looking for formalizability on principle; he never advocated doing mathematics in formal terms; to the contrary, the possibility of formalization, axiomatization together with consistency proofs for the formalized theories would justify the common informal reasoning in mathematics.

  18. 18.

    See the discussion in [49].

  19. 19.

    (vi) in our numbering of the quote above.

  20. 20.

    Arguably, the model of Turing machines has a distinguished status such that it appears reasonable to speak about the Church-Turing Thesis rather than just the Church Thesis.

  21. 21.

    See his Problem Lecture in Paris [29]: “Wenn uns die Beantwortung eines mathematischen Problems nicht gelingen will, so liegt häufig der Grund darin, daß wir noch nicht den allgemeineren Gesichtspunkt erkannt haben, von dem aus das vorgelegte Problem nur als einzelnes Glied einer Kette verwandter Probleme erscheint.” English translation [30, p. 443]: “If we do not succeed in solving a mathematical problem, the reason frequently consists in our failure to recognize the more general standpoint from which the problem before us appears only as a single link in a chain of related problems.”

  22. 22.

    We note in passing that he had also subsumed probability theory under the sixth problem, a theory which may well serve as prime example for the success of the axiomatic method, if one takes into account its axiomatization by Kolmogorov [52].

References

  1. Panel discussion on the foundations of mathematics. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 11. Springer, 2022. This book.

    Google Scholar 

  2. Evandro Agazzi. The semantic function of the axiomatic method. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 4. Springer, 2022. This book.

    Google Scholar 

  3. John L. Bell. Reflections on the axiomatic approach to continuity. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 5. Springer, 2022. This book.

    Google Scholar 

  4. Paul Bernays. Hilberts Untersuchungen über die Grundlagen der Arithmetik. In David Hilbert: Gesammelte Abhandlungen, volume III, pages 196–216. Springer, 1935.

    Google Scholar 

  5. Paul Bernays. Hilbert, David. In P. Edwards, editor, Encyclopedia of Philosophy, volume 3, pages 496–504. Macmillan, 1967.

    Google Scholar 

  6. Paul Bernays. Scope and limits of axiomatics. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 3. Springer, 2022. This book. Reprinted from Mario Bunge, editor, Delaware Seminar in the Foundations of Physics, Springer-Verlag, 1967, pp. 188–191.

    Google Scholar 

  7. Otto Blumenthal. Lebensgeschichte. In David Hilbert: Gesammelte Abhandlungen, volume III, pages 388–429. Springer, 1935.

    Google Scholar 

  8. Udi Boker and Nachum Dershowitz. What is the Church-Turing Thesis? In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 9. Springer, 2022. This book.

    Google Scholar 

  9. Luitzen Egbertus Jan Brouwer. Intuitionistische Betrachtungen über den Formalismus. Koninklijke Akademie van wetenschappen te Amsterdam, Proceedings of the section of sciences, 31:374–379, 1927. Translation in part in [10].

    Google Scholar 

  10. Luitzen Egbertus Jan Brouwer. Intuitionistic reflections on formalism. In J. van Heijenoort, editor, From Frege to Gödel, pages 490–492. Harvard University Press, 1967. English translation of §1 of [9].

    Google Scholar 

  11. Alonzo Church. A set of postulates for the foundations of logic. Annals of Mathematics (2), 33(2):346–366, 1932.

    Google Scholar 

  12. Alonzo Church. A set of postulates for the foundations of logic (second paper). Annals of Mathematics (2), 34(4):839–864, 1933.

    Google Scholar 

  13. Richard Courant. Reminiscences from Hilbert’s Göttingen. The Mathematical Intelligencer, 3(4):154–164, 1981. Edited transcript of a talk given at Yale University on January 13, 1964.

    Google Scholar 

  14. Haskell B. Curry. Grundlagen der kombinatorischen Logik. Amer. J. Math., 52:509–536, 789–834, 1930.

    Article  MathSciNet  Google Scholar 

  15. Richard Dedekind. Was sind und was sollen die Zahlen? Vieweg, 1888.

    Google Scholar 

  16. Erwin Engeler. Aristotle’s relations: An interpretation in combinatory logic. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 5. Springer, 2022. This book.

    Google Scholar 

  17. José Ferreirós. The two sides of modern axiomatics: Dedekind and Peano, Hilbert and Bourbaki. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 6. Springer, 2022. This book.

    Google Scholar 

  18. Gottlob Frege. Die Grundlagen der Arithmetik. Wilhelm Koebner, 1884. Reprinted, M.  & H. Barcus, Breslau, 1934 and Olms, Hildesheim, 1961. English translation in [20].

    Google Scholar 

  19. Gottlob Frege. Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, volume I–II. Hermann Pohle, Jena, 1893/1903.

    Google Scholar 

  20. Gottlob Frege. The Foundations fo Arithmetic. Blackwell, 1950. Translation of [18] by J. L. Austin.

    Google Scholar 

  21. Gerhard Gentzen. Untersuchungen über das logische Schließen I, II. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.

    Article  Google Scholar 

  22. Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112:493–565, 1936.

    Article  MathSciNet  Google Scholar 

  23. Gerhard Gentzen. Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge, 4:5–18, 1938. also in Deutsche Mathematik, 3:255–268, 1939. English translation [24].

    Google Scholar 

  24. Gerhard Gentzen. The present state of research into the foundations of mathematics. In M. E. Szabo, editor, The Collected Works of Gerhard Gentzen, Studies in Logic and the Foundations of Mathematics, pages 234–251. North-Holland, 1969. English translation of [23].

    Google Scholar 

  25. Domenico Giulini. Axiomatic thinking in physics – essence or useless ornament? –. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 10. Springer, 2022. This book.

    Google Scholar 

  26. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

    Article  MathSciNet  Google Scholar 

  27. Lorenz Halbeisen. A framework for metamathematics. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 1. Springer, 2022. This book.

    Google Scholar 

  28. David Hilbert. Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, herausgegeben vom Fest-Comitee, pages 1–92. Teubner, 1899.

    Google Scholar 

  29. David Hilbert. Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der königl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse aus dem Jahre 1900, pages 253–297, 1900. Reprinted in [37, pp. 290–329]; English translation in [30].

    Google Scholar 

  30. David Hilbert. Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900. Bulletin of the American Mathematical Society, 8:437–479, 1902. English translation of [29].

    Google Scholar 

  31. David Hilbert. Über die Grundlagen der Logik und der Arithmetik. In Adolf Krazer, editor, Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, pages 174–185. Leipzig, 1905.

    Google Scholar 

  32. David Hilbert. Hermann minkowski. Göttinger Nachrichten, Geschäftliche Mitteilungen, pages 72–101, 1909. Reprinted in: Mathematische Annalen, 68:445–471, 1910 and in [37, pp. 339–364].

    Google Scholar 

  33. David Hilbert. Probleme der mathematischen Logik. Vorlesung Sommersemester 1920, Ausarbeitung von N. Schönfinkel und P. Bernays (Bibliothek des Mathematischen Instituts der Universität Göttingen), 1920. Published in [40,342–371].

    Google Scholar 

  34. David Hilbert. Über das Unendliche. Mathematische Annalen, 95:161–190, 1926. English translation in [38].

    Google Scholar 

  35. David Hilbert. Probleme der Grundlegung der Mathematik. In Atti del Congresso Internazionale dei Matematici (Bologna, 3–19 settembre 1928). Nicola Zanichelli, 1928a. Offprint; English translation in [39].

    Google Scholar 

  36. David Hilbert. Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Se-minar der Hamburgischen Universität, 6(1/2):65–85, 1928b.

    Article  MathSciNet  Google Scholar 

  37. David Hilbert. Gesammelte Abhandlungen, volume III: Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte. Springer, 1935. 2nd edition 1970.

    Google Scholar 

  38. David Hilbert. On the infinite. In Jean van Heijenoort, editor, From Frege to Gödel, pages 367–392. Harvard University Press, 1967. English translation of [34].

    Google Scholar 

  39. David Hilbert. Problems of the Grounding of Mathematics. In P. Mancosu, editor, From Brouwer to Hilbert, pages 227–233. Oxford University Press, 1998. English translation of [35].

    Google Scholar 

  40. David Hilbert. Lectures on the Foundations of Arithmetic and Logic 1917–1933, volume 3 of David Hilbert’s Lectures on the Foundations of Mathematics and Physics, 1891–1933. Springer, Edited by W. Ewald and W. Sieg edition, 2013.

    Google Scholar 

  41. David Hilbert. Axiomatisches Denken. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 1. Springer, 2022. This book. German original with English translation; the German text is reprinted from Mathematische Annalen, 78:405-415, 1918; the English translation of Joong Fang was first published in Joong Fang, editor, HILBERT–Towards a Philosophy of Modern Mathematics II, Paideia Press, Hauppauge, N.Y. 1970.

    Google Scholar 

  42. David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik, volume XXVII of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1928.

    Google Scholar 

  43. David Hilbert and Paul Bernays. Grundlagen der Mathematik I, volume 40 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1934. 2nd edition 1968.

    Google Scholar 

  44. David Hilbert and Paul Bernays. Grundlagen der Mathematik I/Foundations of Mathematics I. College Publications, 2011. Bilingual edition of Prefaces and §§1–2 of [43].

    Google Scholar 

  45. Inês Hipolito and Reinhard Kahle. Theme issue on “The notion of simple proof – Hilbert’s 24th problem”. Philosophical Transactions of the Royal Society A, 377, 2019.

    Google Scholar 

  46. Gerhard Jäger. Simplified cut elimination for Kripke-Platek set theory. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 2. Springer, 2022. This book.

    Google Scholar 

  47. Reinhard Kahle. David Hilbert über Paradoxien, volume 06-17 of Pré-publicações do Departamento de Matemática, Universidade de Coimbra. 2006.

    Google Scholar 

  48. Reinhard Kahle. David Hilbert and the Principia Mathematica. In N. Griffin and B. Linsky, editors, The Palgrave Centenary Companion to Principia Mathematica, pages 21–34. Palgrave Macmillan, 2013.

    Google Scholar 

  49. Reinhard Kahle. Is there a “Hilbert Thesis”? Studia Logica, 107(1):145–165, 2019. Special Issue on General Proof Theory. Thomas Piecha and Peter Schroeder-Heister (Guest Editors).

    Google Scholar 

  50. Reinhard Kahle. Dedekinds Sätze und Peanos Axiome. Philosophia Scientiæ, 25(1):69–93, 2021. Special Issue on Giuseppe Peano and his School: logic, epistemology and didactics. Paola Cantù and Erika Luciano (Guest Editors).

    Google Scholar 

  51. Stephen Cole Kleene. Introduction to Metamathematics. D. Van Nostrand Company, New York, 1952.

    MATH  Google Scholar 

  52. Andrei Kolmogorow. Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, 1933.

    Google Scholar 

  53. Georg Kreisel. Gödel’s excursions into intuitionistic logic. In Paul Weingartner and Leopold Schmetterer, editors, Gödel Remembered, volume IV of History of Logic, pages 65–186. Bibliopolis, 1987.

    Google Scholar 

  54. Paolo Mancosu. The Russellian influence on Hilbert and his school. Synthese, 137:59–101, 2003.

    Article  MathSciNet  Google Scholar 

  55. Barry Mazur. Notes for a seminar in axiomatic reasoning. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 7. Springer, 2022. This book.

    Google Scholar 

  56. Colin McLarty. Abstract generality, simplicity, forgetting, and discovery. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 6. Springer, 2022. This book.

    Google Scholar 

  57. Victor Pambuccian. Varieties of infiniteness in the existence of infinitely many primes. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 7. Springer, 2022. This book.

    Google Scholar 

  58. Ioseph Peano. Arithmetices Principia Nova Methodo Exposita. Bocca, Augustae Taurinorum, 1889.

    MATH  Google Scholar 

  59. Volker Peckhaus. Hilbertprogramm und Kritische Philosophie, volume 7 of Studien zur Wissenschafts-, Sozial- und Bildungsgeschichte der Mathematik. Vandenhoeck & Ruprecht, Göttingen, 1990.

    Google Scholar 

  60. Jean Petitot. Axiomatics as a functional strategy for complex proofs: the case of Riemann Hypothesis. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 8. Springer, 2022. This book.

    Google Scholar 

  61. Wolfram Pohlers. On the performance of axiom systems. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 3. Springer, 2022. This book.

    Google Scholar 

  62. Michael Rathjen. Well-ordering principles in proof theory and reverse mathematics. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 4. Springer, 2022. This book.

    Google Scholar 

  63. Constance Reid. Hilbert. Springer, 1970.

    Google Scholar 

  64. Bertrand Russell and Alfred North Whitehead. Principia Mathematica, volume 1. Cambridge University Press, 1910. vol. 2, 1912; vol. 3, 1913.

    Google Scholar 

  65. Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316, 1924. English translation [66].

    Google Scholar 

  66. Moses Schönfinkel. On the building blocks of mathematical logic. In Jean van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. 73, pages 355–366. Harvard University Press, 1967. English translation of [65].

    Google Scholar 

  67. Peter Schroeder-Heister. Axiomatic thinking, identity of proofs and the quest for an intensional proof-theoretic semantics. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 8. Springer, 2022. This book.

    Google Scholar 

  68. Wilfried Sieg. Hilbert’s programs: 1917-1922. The Bulletin of Symbolic Logic, 5(1):1–44, 1999.

    Article  MathSciNet  Google Scholar 

  69. Wilfried Sieg. Proofs as objects. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 6. Springer, 2022. This book.

    Google Scholar 

  70. Craig Smoryński. Where do axioms come from? In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 1: History and Philosophy, chapter 10. Springer, 2022. This book.

    Google Scholar 

  71. Rüdiger Thiele. Hilbert’s twenty-fourth problem. American Mathematical Monthly, 110(1):1–24, 2003.

    Article  MathSciNet  Google Scholar 

  72. Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

    MathSciNet  MATH  Google Scholar 

  73. Jean van Heijenoort. From Frege to Gödel. Harvard University Press, 1967.

    Google Scholar 

  74. Paul Weingartner. Axiomatic thinking – applied to religion. In Fernando Ferreira, Reinhard Kahle, and Giovanni Sommaruga, editors, Axiomatic Thinking, volume 2: Logic, Mathematics, and other Sciences, chapter 11. Springer, 2022. This book.

    Google Scholar 

  75. Hermann Weyl. David Hilbert and his mathematical work. Bulletin of the American Mathematical Society, 50(9):612–654, 1944.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Kahle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahle, R., Sommaruga, G. (2022). Hilbert’s Axiomatisches Denken. In: Ferreira, F., Kahle, R., Sommaruga, G. (eds) Axiomatic Thinking I. Springer, Cham. https://doi.org/10.1007/978-3-030-77657-2_2

Download citation

Publish with us

Policies and ethics

Navigation