Learn to Rectify Label Through Kernel Extreme Learning Machine

  • Conference paper
  • First Online:
Quality, Reliability, Security and Robustness in Heterogeneous Systems (QShine 2020)

Abstract

Recent studies attempt to construct complicated and redundant Convolutional Neural Networks (CNNs) to improve image classification performance. In this paper, instead of painstakingly designing a CNN’s architecture, we consider promoting classification performance by revising CNN’s classification results. We therefore propose a novel image classification approach that Learns to Rectify Label (LRL) through Kernel Extreme Learning Machine (KELM). It includes two phases: (1) Pre classification, we put images into a trained CNN to generate corresponding incomplete labels. (2) Label Rectification, the incomplete labels are rectified by the KELM’s high-dimensional map**, so final classification results are acquired. Extensive experiments conducted on public datasets demonstrate the effectiveness of our method. At the meantime, our method has well generalizability that can be integrated with many popular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.F.: An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. ar**v preprint ar**v:1712.03541 (2017)

  2. Bernal, J., et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81 (2019)

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection (2005)

    Google Scholar 

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  6. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: a new multi-scale backbone architecture. ar**v preprint ar**v:1904.01169 (2019)

  7. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity map**s in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  10. Hou, S., Wang, Z.: Weighted channel dropout for regularization of deep convolutional neural network. In: AAAI (2019)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  13. Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)

    Article  Google Scholar 

  14. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2011)

    Google Scholar 

  15. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  16. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. ar**v preprint ar**v:1602.07360 (2016)

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ar**v preprint ar**v:1502.03167 (2015)

  18. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical Report, Citeseer (2009)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. ar**v preprint ar**v:1605.07648 (2016)

  21. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks (2019)

    Google Scholar 

  22. Li, Z., Zhu, X., Wang, L., Guo, P.: Image classification using convolutional neural networks and kernel extreme learning machines. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3009–3013. IEEE (2018)

    Google Scholar 

  23. Lin, M., Chen, Q., Yan, S.: Network in network. ar**v preprint ar**v:1312.4400 (2013)

  24. Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, pp. 1150–1157 (1999)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556 (2014)

  26. Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning with neural networks. In: Advances in NIPS (2014)

    Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  28. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. ar**v preprint ar**v:1612.01064 (2016)

  29. Zhu, Y., Zhang, C., Zhou, D., Wang, X., Bai, X., Liu, W.: Traffic sign detection and recognition using fully convolutional network guided proposals. Neurocomputing 214, 758–766 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61877002), Bei**g Municipal Commission of Education PXM2019_014213_000007, Bei**g Natural Science Foundation, Fengtai Rail Transit Frontier Research Joint Fund 19L00005, and Postgraduate Research Capacity Improvement Program from Bei**g Technology and Business University in 2020.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Q., Li, F., Li, H., Cao, J., Li, S. (2021). Learn to Rectify Label Through Kernel Extreme Learning Machine. In: Wu, X., Wu, K., Wang, C. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. QShine 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 381. Springer, Cham. https://doi.org/10.1007/978-3-030-77569-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77569-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77568-1

  • Online ISBN: 978-3-030-77569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation