Astroglia Abnormalities in Post-stroke Mood Disorders

  • Chapter
  • First Online:
Astrocytes in Psychiatric Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 26))

Abstract

Stroke is the leading cause of human death and disability. After a stroke, many patients may have some physical disability, including difficulties in moving, speaking, and seeing, but patients may also exhibit changes in mood manifested by depression, anxiety, and cognitive changes which we call post-stroke mood disorders (PSMDs). Astrocytes are the most diverse and numerous glial cell type in the central nervous system (CNS). They provide structural, nutritional, and metabolic support to neurons and regulate synaptic activity under normal conditions. Astrocytes are also critically involved in focal ischemic stroke (FIS). They undergo many changes after FIS. These changes may affect acute neuronal death and brain damage as well as brain recovery and PSMD in the chronic phase after FIS. Studies using postmortem brain specimens and animal models of FIS suggest that astrocytes/reactive astrocytes are involved in PSMD. This chapter provides an overview of recent advances in the molecular base of astrocyte in PSMD. As astrocytes exhibit high plasticity after FIS, we suggest that targeting local astrocytes may be a promising strategy for PSMD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altshuler LL, Abulseoud OA, Foland-Ross L et al (2010) Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12:541–549

    Article  PubMed  Google Scholar 

  • Anderson MA, Burda JE, Ren Y et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. [Review] [61 refs]. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Arsenault-Lapierre GV, Kim C, Turecki G (2004) Psychiatric diagnoses in 3275 suicides: a meta-analysis. BMC Psychiatry 4:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayerbe L, Ayis S, Wolfe CDA, Rudd AG (2013) Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. Br J Psychiatry 202:14–21

    Article  PubMed  Google Scholar 

  • Baker PM, Jhou T, Li B et al (2016) The lateral Habenula circuitry: reward processing and cognitive control. J Neurosci 36:11482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan P, Rosen H (2008) The causes and treatment of pseudobulbar affect in ischemic stroke. Curr Treat Options Cardiovasc Med 10:216

    Article  PubMed  Google Scholar 

  • Balu DT, Presti KT, Huang CCY et al (2018) Serine racemase and D-serine in the amygdala are dynamically involved in fear learning. Biol Psychiatry 83:273–283

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Bano D, Young KW, Guerin CJ, LeFeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    Article  CAS  PubMed  Google Scholar 

  • Barber PA, Demchuk AMH (2003) Biochemistry ischemic stroke. Adv Neurol 92:151–164

    PubMed  Google Scholar 

  • Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6:e27881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtholt-Gompf AJ, Walther HV, Adams MA et al (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger M, Allaman I, Magistretti P (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  CAS  PubMed  Google Scholar 

  • Bender CL, Calfa GD, Molina VA (2016) Astrocyte plasticity induced by emotional stress: a new partner in psychiatric physiopathology? Prog Neuro-Psychopharmacol Biol Psychiatry 65:68–77

    Article  Google Scholar 

  • Bernard R, Kerman IA, Thompson RC et al (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646

    Article  CAS  PubMed  Google Scholar 

  • Bonfoco E (1995) Apoptosis and necrosis, two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell culture. Proc Natl Acad Sci U S A 92:7162–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  • Burda J, Sofroniew M (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BCV, De Silva DA, Macleod MR et al (2019) Ischemic stroke. Nat Rev Dis Primers 5:70

    Article  PubMed  Google Scholar 

  • Cao X, Li LP, Wang Q et al (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777

    Article  CAS  PubMed  Google Scholar 

  • Carrard A, Elsayed M, Margineanu M et al (2018) Peripheral administration of lactate produces antidepressant-like effects. Mol Psychiatry 23:392–399

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Yu Y, Yuan Y et al (2017) Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell Death Discov 3:17054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudary PV, Molnar M, Evans SJ et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. PNAS 102:15653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244

    Article  PubMed  Google Scholar 

  • Cotter D, Mackay D, Landau S et al (2001a) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    Article  CAS  PubMed  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001b) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yang Y, Ni Z et al (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554:323–327

    Article  CAS  PubMed  Google Scholar 

  • Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9:2048–2052

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57:767–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  • Doll DN, Rellick SL, Barr TL et al (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domin H, Szewczyk B, Wozniak M et al (2014) Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res 273:23–33

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, He J, Chai Z (2013) Astrocytic Ca2+ waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia. Neurobiol Dis 58:68–75

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126:413–431

    Article  CAS  PubMed  Google Scholar 

  • Eliasson MJ et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Faiz M, Sachewsky N, Gascon S et al (2015) Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 17:624–634

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Mpofu E, Athanasou J (2017) Reducing depressive or anxiety symptoms in post-stroke patients: pilot trial of a constructive integrative psychosocial intervention. Int J Health Sci 11:53–58

    Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Klett F, Potas JR, Hilpert D et al (2012) Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 33:428–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folbergrova J, Zhao Q, Katsura K, Siesjo BK (1995) N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. PNAS 92:5057–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Lin M, Zhao J et al (2016) Different interventions for post-ischaemic stroke depression in different time periods: a single-blind randomized controlled trial with stratification by time after stroke. Clin Rehabil 31:71–81

    Article  PubMed  Google Scholar 

  • Gillespie DC, Cadden AP, Lees R et al (2016) Prevalence of pseudobulbar affect following stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 25:688–694

    Article  PubMed  Google Scholar 

  • Gittins RA, Harrison PJ (2011) A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord 133:328–332

    Article  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2020) Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Habbas S, Santello M, Becker D et al (2015) Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163:1730–1741

    Article  CAS  PubMed  Google Scholar 

  • Hackett ML, Anderson CS, House A, Halteh C (2008) Interventions for preventing depression after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003689.pub3

  • Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Florian C, Fellin T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. PNAS 94:2007–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon E, Miller AH, Sanacora G (2017) Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 42:193–215

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29:799–804

    Article  PubMed  Google Scholar 

  • Hill K, House A, Knapp P et al (2019) Prevention of mood disorder after stroke: a randomised controlled trial of problem solving therapy versus volunteer support. BMC Neurol 19:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirst WD, Price GW, Rattray M, Wilkin GP (1998) Serotonin transporters in adult rat brain astrocytes revealed by [3H]5-HT uptake into glial plasmalemmal vesicles. Neurochem Int 33:11–22

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Cui Y, Yang Y (2020) Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 21:277–295

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Casey R et al (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illes P, Rubini P, Yin H, Tang Y (2020) Impaired ATP release from brain astrocytes may be a cause of major depression. Neurosci Bull 36:1281–1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Inazu M, Takeda H, Matsumiya T (2003) Functional expression of the norepinephrine transporter in cultured rat astrocytes. J Neurochem 84:136–144

    Article  CAS  PubMed  Google Scholar 

  • John CS, Smith KL, Van’T Veer A et al (2012) Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 37:2467–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Bromet EJ (2013) The epidemiology of depression across cultures. Annu Rev Public Health 34:119–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS (2016) Post-stroke mood and emotional disturbances: pharmacological therapy based on mechanisms. J Stroke 18:244–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg H, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong H, Zeng XN, Fan Y et al (2014) Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 20:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeComte MD, Shimada IS, Sherwin C, Spees JL (2015) Notch1-TAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury. PNAS 112:8726–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng L et al (2018) Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 100:551–563

    Article  CAS  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang N, Sun G, Ding S (2013a) Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro 5:195–207

    Article  CAS  PubMed  Google Scholar 

  • Li K, Zhou T, Liao L et al (2013b) βCaMKII in lateral Habenula mediates core symptoms of depression. Science 341:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang N, Lin H et al (2014) Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neurosci 15:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, **e Y, Zhang N et al (2015) Disruption of IP3R2-mediated Ca2+ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima A, Sardinha VM, Oliveira AF et al (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19:834–841

    Article  CAS  PubMed  Google Scholar 

  • Linnerbauer M, Rothhammer V (2020) Protective functions of reactive astrocytes following central nervous system insult. Front Immunol 11:573256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    Article  CAS  PubMed  Google Scholar 

  • Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500

    Article  CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  • Maaijwee NAMM, Tendolkar I, Rutten-Jacobs LCA et al (2016) Long-term depressive symptoms and anxiety after transient ischaemic attack or ischaemic stroke in young adults. Eur J Neurol 23:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Magistretti P, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes. Cereb Cortex 6:50–61

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  • Marathe SV, D’almeida PL, Virmani G et al (2018) Effects of monoamines and antidepressants on astrocyte physiology: implications for monoamine hypothesis of depression. J Exp Neurosci 12:1–7

    Article  Google Scholar 

  • Matthias LS, Julia S, Johann S (2013) Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 14:1237–1248

    Article  CAS  Google Scholar 

  • Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci 11:254–260

    Article  CAS  PubMed  Google Scholar 

  • Mochari-Greenberger H, Towfighi A, Mosca L (2014) National women’s knowledge of stroke warning signs, overall and by race/ethnic group. Stroke 45:1180–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myer DJ, Gurkoff GG, Lee SM et al (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Article  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. PNAS 95:13290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orrenius S (1995) Apoptosis: molecular mechanisms and implications for human disease. J Intern Med 237:529–536

    Article  CAS  PubMed  Google Scholar 

  • Otte DM, Barcena de Arellano ML et al (2013) Effects of chronic D-serine elevation on animal models of depression and anxiety-related behavior. PLoS One 8:e67131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya M, Altinay M, Malone DA, Anand A (2012) Where in the brain is depression? Curr Psychiatry Rep 14:634–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Park K, Lee SJ (2020) Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp Mol Med 52:1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petravicz J, Boyt KM, McCarthy KD (2014) Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci 8:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisoni A, Strawbridge R, Hodsoll J et al (2018) Growth factor proteins and treatment-resistant depression: a place on the path to precision. Front Psych 9:386

    Article  Google Scholar 

  • Poulin VR, Korner-Bitensky N, Bherer L et al (2016) Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: a pilot study. Disabil Rehabil 39:1–13

    Article  PubMed  Google Scholar 

  • Quesseveur G, David DJ, Gaillard MC et al (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3:e253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TJ, Elliott E, Langhorne P (2018) Cognitive and mood assessment tools for use in stroke. Stroke 49:483–490

    Article  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Hughes J, Stockmeier CA et al (2013) Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73:613–621

    Article  PubMed  Google Scholar 

  • Robinson RG, Jorge RE (2015) Post-stroke depression: a review. Am J Psychiatry 173:221–231

    Article  PubMed  Google Scholar 

  • Ronning OM, Guldvog B (1998) Outcome of subacute stroke rehabilitation: a randomized controlled trial. Stroke 29:779–784

    Article  CAS  PubMed  Google Scholar 

  • Saengsuwan J, Suangpho P, Tiamkao S (2017) Knowledge of stroke risk factors and warning signs in patients with recurrent stroke or recurrent transient ischaemic attack in Thailand. Neurol Res Int 2017:8215726

    Article  PubMed  PubMed Central  Google Scholar 

  • Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  CAS  PubMed  Google Scholar 

  • Schottke H, Giabbiconi CM (2015) Post-stroke depression and post-stroke anxiety: prevalence and predictors. Int Psychoger 27:1805–1812

    Article  Google Scholar 

  • Schroeter ML, Abdul-Khaliq H, Diefenbacher A, Blasig IE (2002) S100B is increased in mood disorders and may be reduced by antidepressive treatment. Neuroreport 13:1675–1678

    Article  CAS  PubMed  Google Scholar 

  • Schroeter ML, Steiner J, Mueller K (2011) Glial pathology is modified by age in mood disorders-a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord 134:32–38

    Article  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Sequeira A, Mamdani F, Ernst C et al (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4:e6585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54:338–352

    Article  PubMed  Google Scholar 

  • Shimada IS, Borders A, Aronshtam A, Spees JL (2011) Proliferating reactive astrocytes are regulated by notch-1 in the peri-infarct area after stroke. Stroke 42:3231–3237

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofroniew M, Vinters H (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Soriano FX, Martel MA, Papadia S et al (2008) Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J Neurosci 28:10696–10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JD, Liu Y, Yuan YH et al (2012) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 37:1305–1320

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Stern S, Bozdagi O et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Platas SG, Nagy C, Wakid M et al (2016) Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol Psychiatry 21:509–515

    Article  CAS  PubMed  Google Scholar 

  • Virani SS et al (2020) Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141:e139–e596

    Article  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  PubMed  Google Scholar 

  • Voskuhl RR, Peterson RS, Song B et al (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29:11511–11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vosler PS, Gao Y, Brennan CS et al (2011) Ischemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (eIF4GI) degradation, protein synthesis inhibition, and neuronal death. PNAS 108:18102–18107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Zhang ZJ, Guo YJ et al (2008) Anhedonia and activity deficits in rats: impact of post-stroke depression. J Psychopharmacol 23:295–304

    Article  PubMed  Google Scholar 

  • Wang G, Zhang Z, Ayala C et al (2014a) Costs of hospitalization for stroke patients aged 18-64 years in the United States. J Stroke Cerebrovasc Dis 23:861–868

    Article  PubMed  Google Scholar 

  • Wang X, Li H, Ding S (2014b) The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int J Mol Sci 15:1012–1022

    Article  Google Scholar 

  • Wang X, Li H, Ding S (2016) Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia. Sci Rep 6:32416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Jie W, Liu JH et al (2017) An astroglial basis of major depressive disorder? An overview. Glia 65:1227–1250

    Article  PubMed  Google Scholar 

  • Wanner IB, Anderson MA, Song B et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster MJ, Knable MB, Johnston-Wilson N et al (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 15:388–400

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Bushong EA, Price DL et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513–17518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosker H, Balu DT (2020) D-serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 10:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright F, Wu S, Chun HYY, Mead G (2017) Factors associated with poststroke anxiety: a systematic review and meta-analysis. Stroke Res Treat 2017:2124743

    PubMed  PubMed Central  Google Scholar 

  • Wu QJ, Tymianski M (2018) Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain 11:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu DY, Guo M, Gao YS et al (2012) Clinical effects of comprehensive therapy of early psychological intervention and rehabilitation training on neurological rehabilitation of patients with acute stroke. Asian Pac J Trop Med 5:914–916

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Cui Y, Sang K et al (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:317–322

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Cheng Z, Ali AI et al (2019a) Chronic unexpected mild stress destroys synaptic plasticity of neurons through a glutamate transporter, GLT-1, of astrocytes in the ischemic stroke rat. Neural Plast 2019:1615925

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu D, Cheng Z, Ali AI et al (2019b) Down-expressed GLT-1 in PSD astrocytes inhibits synaptic formation of NSC-derived neurons in vitro. Cell Cycle 18:105–114

    Article  CAS  PubMed  Google Scholar 

  • Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687

    Article  CAS  PubMed  Google Scholar 

  • Zhang FF, Peng W, Sweeney JA et al (2018) Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther 24:994–1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Wang Y, He Y et al (2020a) A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation 17:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang Z, He R et al (2020b) GLAST-CreERT2 mediated deletion of GDNF increases brain damage and exacerbates long-term stroke outcomes after focal ischemic stroke in mouse model. Glia 68:2395–2414

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Ma R, Shen J et al (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [National Institute of Neurological Disorders and Stroke (NINDS) grants R01NS069726 and R01NS094539 to SD] and the America Heart Association [Midwest Affiliate Grant-in-Aid (16GRNT31280014) and NCRG-IRG 16IRG27780023 to SD].

Author Contributions

Tracey Singer, original draft preparation and editing; Sarah Ding, original draft preparation; Shinghua Ding, original draft preparation, editing, and supervision.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinghua Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singer, T., Ding, S., Ding, S. (2021). Astroglia Abnormalities in Post-stroke Mood Disorders. In: Li, B., Parpura, V., Verkhratsky, A., Scuderi, C. (eds) Astrocytes in Psychiatric Disorders. Advances in Neurobiology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-77375-5_6

Download citation

Publish with us

Policies and ethics

Navigation