Detection of Chaotic Behavior in Dynamical Systems Using a Method of Deformable Active Contours

  • Conference paper
  • First Online:
Perspectives in Dynamical Systems II: Mathematical and Numerical Approaches (DSTA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 363))

Included in the following conference series:

  • 368 Accesses

Abstract

In this article we investigated the problem of detecting the chaotic behavior of the dynamical system with a Hamiltonian structure using pattern recognition methods. We carried out a numerical constructed of the phase space structure of these dynamical system which represented on 2D Poincare’ sections of a special points cloud in chaotic cases. This chaotic regions are characterized by many various bad formalizing analytically forms. We are classified these forms on 2d sections in simply and multiply connected, inside and outside located. We adapted a deformable active contours method for closed curves to automatic detecting these chaotic regions of the dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruchkin, C.: The general conception of the intellectual investigation of the regular and chaotic behavior of the dynamical system hamiltonian structure. Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics and Statistics, vol. 93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08266-0_17

  2. Ruchkin, K.A.: Development of computer system for analysis of Poincare’ sections / K.A. Ruchkin. “Artificial intelligence”. - Donetsk: NAS Ukraine. - 2009. - No̱ 1., pp. 83–87 (2009)

    Google Scholar 

  3. Neumark, Yu.I.: The multidimensional geometry and image recognition. Soros Educational Magazine Number 7, pp. 119–123 (1996)

    Google Scholar 

  4. Nejmark Yu.I.: New the approach to numerical research of specific dynamic systems by pattern recognition and statistical modeling methods / Yu.I. Nejmark, I.V. Kotelnikov, L.G. Teklina. News High Schools “Application-oriented nonlinear dynamics”. - 2010. - 18. - No̱2, pp. 3–15 (2010)

    Google Scholar 

  5. Neimark, Yu.I., Teklina, L.G.: On possibilities of using pattern recognition methods to study mathematical models. Pattern Recognit. Image Anal. 22(1), 144–149 (2012). https://doi.org/10.1134/S1054661812010282

    Article  Google Scholar 

  6. Neimark, Yu.I., Kotelnikov, I.V., Teklina, L.G.: Investigation of the structure of the phase space of a dynamical system as a pattern recognition problem. In: Conference on MMRO-12, pp. 177–180. M. MaksPress (2005)

    Google Scholar 

  7. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. Roy. Soc. A 460, 603–611 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gottwald, G.A., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D 212(1–2), 100–110 (2005)

    Article  MathSciNet  Google Scholar 

  9. Gottwald, G.A., Melbourne, I.: Comment on “Reliability of the 0–1 test for chaos”. Phys. Rev. E 77, 028201 (2008)

    Article  Google Scholar 

  10. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1test for chaos. SIAM J. Appl. Dyn. 8, 129–145 (2009)

    Article  Google Scholar 

  11. Gottwald, G.A., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22, 1367–1382 (2009)

    Article  MathSciNet  Google Scholar 

  12. Gottwald, G.A., Melbourne, I.: A Huygens principle for diffusion and anomalous diffusion in spatially extended systems. Proc. Natl. Acad. Sci. USA 110, 8411–8416 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gottwald, G.A., Melbourne, I.: Central limit theorems and suppression of anomalous diffusion for systems with symmetry. submitted. (2013). https://arxiv.org/abs/1404.0770

  14. Gottwald, G.A., Melbourne, I.: A test for a conjecture on the nature of attractors for smooth dynamical systems. Chaos 24, 024403 (2014). https://doi.org/10.1063/1.4868984

    Article  MathSciNet  Google Scholar 

  15. Zachilas, L., Psarianos I.: Examining the chaotic behavior in dynamical systems by means of the 0-1 Test. J. Appl. Math. 2012, 681296 (2012). https://doi.org/10.1155/2012/681296

  16. Kyriakopoulos, N., Koukouloyannis, V., Skokos, Ch., Kevrekidis, P.: Chaotic behavior of three interacting vortices in a confined bose-einstein condensate. Chaos 24, 024410 (2013). https://doi.org/10.1063/1.4882169

    Article  MathSciNet  Google Scholar 

  17. Manos, Th., Skokos, Ch., Athanassoula, E., Bountis T.: Studying the global dynamics of conservative dynamical systems using the SALI chaos detection method. Nonlinear Phenomena Complex Syst. 11, 171–176 (2008)

    MathSciNet  Google Scholar 

  18. Skokos, C., Parsopoulos, K.E., Patsis, P.A., Vrahatis, M.N.: Particle swarm optimization: an efficient method for tracing periodic orbits in three-dimensional galactic potentials. Monthly Notices Roy. Astron. Soc. 359(1), 251–260 (2005). https://doi.org/10.1111/j.1365-2966.2005.08892

    Article  Google Scholar 

  19. Petalas, Y., Parsopoulos, K., Vrahatis, M.: Stochastic optimization for detecting periodic orbits of nonlinear map**s. Nonlinear Phenom. Complex Syst. 11, 285–291 (2008)

    MathSciNet  Google Scholar 

  20. Petalas, Y., Antonopoulos, Ch., Bountis, T., Vrahatis, M.: Detecting Resonances using Evolutionary Algorithms. In: roceedings of the International Conference of “Computational Methods in Sciences and Engineering”(ICCMSE 2006). CRC Press, Boca Raton (2019). https://doi.org/10.1201/9780429070655-106

  21. Strijov, V., Shakin, V.: An algorithm for clustering of the phase trajectory of a dynamic system. Math. Commun. Suppl. 1, 159–165 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Kass, M., Witkin, A., Terzopoulos, D.: snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Google Scholar 

  23. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruchkin, A., Ruchkin, C. (2021). Detection of Chaotic Behavior in Dynamical Systems Using a Method of Deformable Active Contours. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems II: Mathematical and Numerical Approaches. DSTA 2019. Springer Proceedings in Mathematics & Statistics, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-77310-6_13

Download citation

Publish with us

Policies and ethics

Navigation