The Eigencurve of Modular Symbols

  • Chapter
  • First Online:
The Eigenbook

Part of the book series: Pathways in Mathematics ((PATHMATH))

  • 1318 Accesses

Abstract

Stevens’s overconvergent modular symbols can replace Coleman’s overconvergent modular forms in the construction of the eigencurve. We give in Sect. 7.1 a detailed version of this construction. We then (Sect. 7.2) use Chenevier’s comparison theorem (see Sect. 3.8) to prove that this eigencurve is essentially the same as the Coleman-Mazur eigencurve. This construction provides over the eigencurve a natural module of distribution-valued modular symbols which is closely related to L-functions. In the next Sect. 7.3, we offer a detailed discussion of the points of the eigencurve that correspond to classical modular forms. Those points, and their neighborhoods in the eigencurve, are the main objects of interest for arithmetical applications. Section 7.4 introduces and studies one of the last remaining important characters of our intrigue, the family of Galois representations that the eigencurve carry. Using this family and Galois cohomology arguments, we study the local geometry of the eigencurve at classical points, focussing on questions of smoothness and étaleness over the weight space. Finally, we briefly discuss the most important results and questions concerning the global geometry of the eigencurve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the definition of linked, see Sect. 3.5.

  2. 2.

    For the definition of a generalized elliptic curve, see [53, Chapter II]. Let us just recall that the smooth locus E reg of a generalized elliptic curve is a group scheme over S, that E is smooth if and only if it is an elliptic curve over S, and that non-smooth generalized elliptic curves over fields correspond to cusps in the moduli schemes of generalized elliptic curves.

  3. 3.

    The definition of such a structure can be found in [77] but ww will not use it here.

  4. 4.

    For the definition of the generalized elliptic curve Tate(q N), see [53].

  5. 5.

    To understand this definition, recall that E p−1 lifts the Hasse-invariant modulo p. Thus \(\tilde X(\Gamma ,0)\) consist of all points (E, H, α) such that |E p−1(E, η)| = 1, that is such that either E is a non-smooth generalized elliptic curve (i.e. (E, α, H) is a cusp of ), or E is a true elliptic curve and the reduction of E mod p is ordinary. If v > 0, then \(\tilde X(\Gamma ,v)\) is a slightly larger affinoid containing also points (E, H, α) where E has supersingular reduction.

  6. 6.

    French très classique. This terminology seems to be due to Chenevier.

  7. 7.

    This was at first a question of Greenberg, now become a folklore conjecture. See [61].

  8. 8.

    A form f of level prime to p is regular at p if its two p-adic refinements f α and f β are distinct.

References

  1. F. Andreatta, A. Iovita, G. Stevens, Overconvergent modular sheaves and modular forms for GL2F. Israel J. Math. 201(1), 299–359 (2014)

    Google Scholar 

  2. F. Andreatta, A. Iovita, V. Pilloni, Le halo spectral. Ann. Sci. Éc. Norm. Supér. 51(3), 603–655 (2018)

    Article  MathSciNet  Google Scholar 

  3. J. Bellaïche, Critical p-adic L-function. Invent. Math. 189(1), 1–60 (2012)

    Article  MathSciNet  Google Scholar 

  4. J. Bellaïche, p-adic L-functions of critical CM forms. http://people.brandeis.edu/~jbellaic/

  5. J. Bellaïche, Introduction to the conjecture of Bloch-Kato, notes from Hawaii CMI summer school. http://people.brandeis.edu/~jbellaic/

  6. J. Bellaïche, G. Chenevier, On the eigencurve at classical weight 1 points. J. Inst. Math. Jussieu 5(2), 333–349 (2006)

    Article  MathSciNet  Google Scholar 

  7. J. Bellaïche, G. Chenevier, Families of Galois representations and Selmer groups. Soc. Math. France. Astérisque 324, 1–314 (2009)

    MATH  Google Scholar 

  8. J. Bellaïche, M. Dimitrov, On the eigencurve at classical weight 1 points. Duke Math. J. 165(2), 245–266 (2016)

    Article  MathSciNet  Google Scholar 

  9. J. Bergdall, Ordinary modular forms and companion points on the eigencurve. J. Number Theory 134, 226–239 (2014)

    Article  MathSciNet  Google Scholar 

  10. V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces. Publ. Math. I.H.E.S. 78, 5–161 (1993)

    Google Scholar 

  11. A. Betina, M. Dimitrov, Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functions (2021). arxiv:1907.09422

    Google Scholar 

  12. A. Betina, M. Dimitrov, A. Pozzi, On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve (2021). arxiv: 1804.00648

    Google Scholar 

  13. C. Breuil, M. Emerton, Représentations p-adiques ordinaires de \(GL_2(\mathbb {Q}_p)\) et compatibilité local-global. Astérisque 331, 255–315 (2010)

    Google Scholar 

  14. O. Brinon, C. Conrad, CMI Summer School Notes on p-adic Hodge Theory, Available at http://math.stanford.edu/~conrad/papers/notes.pdf

  15. S. Bosch, U. Guntzer, R. Remmert, Non-archimedian Analysis. Grundlehren der mathematischen Wissenschaften, vol. 261 (Springer, Berlin, 1984)

    Google Scholar 

  16. K. Buzzard, F. Calegari, The 2-adic eigencurve is proper. Doc. Math. Extra Vol. 211–232 (2006)

    Google Scholar 

  17. H. Carayol, Sur les représentations galoisiennes modulo lattachées aux formes modulaires. Duke Math. J. 59(3), 785–801 (1989)

    Google Scholar 

  18. G. Chenevier, Familles p-adiques de formes automorphes et applications aux conjectures de Bloch-Kato. Ph. D. Thesis, defended on June 13th, (2003) (Paris VII, under the supervision of M.Harris), 192 p. available on http://gaetan.chenevier.perso.math.cnrs.fr/pub.html

  19. G. Chenevier, Familles p-adiques de formes automorphes pour GLn. J. Reine Angew. Math. 570, 143–217 (2004)

    MathSciNet  MATH  Google Scholar 

  20. G. Chenevier, une correspondance de Jacquet-Langlands p-adique. Duke Math. J. 126(1), 161–194 (2005)

    Google Scholar 

  21. R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3), 215–241 (1996)

    Article  MathSciNet  Google Scholar 

  22. R. Coleman, p-adic Banach spaces and families of modular forms. Invent. Math. 127(3), 417–479 (1997)

    Google Scholar 

  23. R. Coleman, B. Mazur, The eigencurve, in Proceedings of the Durham, 1996. Lecture Notes Series, vol. 254 (London Mathematical Society, London, 1998)

    Google Scholar 

  24. R. Coleman, F. Gouvêa, N. Jochnowitz, E 2, Θ, and overconvergence. Internat. Math. Res. Notices 1995(1), 23–41 (1995)

    Article  MathSciNet  Google Scholar 

  25. B. Conrad, Several Approaches to Non-Archimedean Geometry, in p-Adic Geometry. University Lecture Series, vol. 45 (American Mathematical Society, Providence, 2008), pp. 9–63

    Google Scholar 

  26. P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques., in Modular Functions of One Variable, II (Proceedings International Summer School, University of Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 349 (Springer, Berlin, 1973), pp. 143–316

    Google Scholar 

  27. H. Diao, R. Liu, The eigencurve is proper. Duke Math. J. 165(7), 1381–1395 (2016)

    Article  MathSciNet  Google Scholar 

  28. E. Ghate, On the local behavior of ordinary modular Galois representation, in Modular Curves and Abelian Varieties. Progress in Math, vol. 224 (Birkhäuser, Basel, 2004), pp. 105–124

    Google Scholar 

  29. S. Hattori, J. Newton, Irreducible components of the eigencurve of finite degree are finite over the weight space. J. Reine Angew. Math. 763, 251–269 (2020)

    Article  MathSciNet  Google Scholar 

  30. U. Jannsen, On the l-adic cohomology of varieties over number fields and its Galois cohomology, in Galois Groups Over \(\mathbb {Q}\) (Berkeley, CA, 1987). Mathematical Sciences Research Institute Publications, vol. 16, (Springer, New York, 1989), pp. 315–360

    Google Scholar 

  31. C. Johansson, J. Newton, Extended eigenvarieties for overconvergent cohomology. Algebra Number Theory 13(1), 93–158 (2019)

    Article  MathSciNet  Google Scholar 

  32. N. Katz, p-adic L-functions for CM fields. Invent. Math 49, 199–297 (1978)

    Google Scholar 

  33. W. Kim, Ramifications points on the eigencurve, PhD Thesis, Berkeley (2006)

    Google Scholar 

  34. M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture. Inv. Math. 153(2), 373–454 (2003)

    Article  MathSciNet  Google Scholar 

  35. R. Liu, D. Wan, L. **ao, The eigencurve over the boundary of weight space. Duke Math. J. 166(9), 1739–1787 (2017)

    Article  MathSciNet  Google Scholar 

  36. R. Livné, On the conductors of mod l Galois representations coming from modular forms. J. Number Theory 31(2), 133–141 (1989)

    Article  MathSciNet  Google Scholar 

  37. T. Miyake, Modular Forms. Springer Monographs in Mathematics (Springer, Berlin, 2006). Translation of the 1976 Edition

    Google Scholar 

  38. J. Park, p-adic family of half-integral weight modular forms via overconvergent Shintani lifting. Manuscripta Math. 131(3–4), 355–384 (2010)

    Google Scholar 

  39. V. Pilloni, Overconvergent modular forms. Ann. Inst. Fourier 63(1), 219–239 (2013)

    Article  MathSciNet  Google Scholar 

  40. R. Pollack, G. Stevens, Overconvergent modular symbols and p-adic L-functions. Ann. Sci. Éc. Norm. Supér. 44(1), 1–42 (2011)

    Article  MathSciNet  Google Scholar 

  41. R. Pollack, G. Stevens, Critical slope p-adic L-functions. J. Lond. Math. Soc. 87(2), 428–452 (2013)

    Article  MathSciNet  Google Scholar 

  42. A. Wiles, On ordinary λ-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MathSciNet  Google Scholar 

  43. L. Ye, A modular proof of the properness of the Coleman-Mazur eigencurve (2020). arxiv:2010.10705v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellaïche, J. (2021). The Eigencurve of Modular Symbols. In: The Eigenbook. Pathways in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-77263-5_7

Download citation

Publish with us

Policies and ethics

Navigation