Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview

  • Chapter
  • First Online:
Separation Techniques Applied to Omics Sciences

Abstract

Metabolomics is a discipline that offers a comprehensive analysis of metabolites in biological samples. In the last decades, the notable evolution in liquid chromatography and mass spectrometry technologies has driven an exponential progress in LC-MS-based metabolomics. Targeted and untargeted metabolomics strategies are important tools in health and medical science, especially in the study of disease-related biomarkers, drug discovery and development, toxicology, diet, physical exercise, and precision medicine. Clinical and biological problems can now be understood in terms of metabolic phenoty**. This overview highlights the current approaches to LC-MS-based metabolomics analysis and its applications in the clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

CE:

Capillary electrophoresis

DDA:

Data-dependent acquisition

DIA:

Data-independent acquisition

DIPEA:

Diisopropylethylamine

DoE:

Design of experiments

EIC:

Extracted ion chromatogram

ESI:

Electrospray

FA:

Formic acid

FT-ICR:

Fourier-transform ion cyclotron resonance

GC:

Gas chromatography

HCD:

Higher-energy collisional dissociation

HDMSE:

Ion mobility assisted-DIS

HFIP:

1,1,1,3,3,3-hexafluoro-2-propanol

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

IC:

Ionic chromatography

ICP-MS:

Inductively coupled plasma-mass spectrometry

IPC:

Ion pair chromatography

LC:

Liquid chromatography

LIT:

Linear ion trap

LLE:

Liquid-liquid extraction

LPME:

Liquid-phase microextraction

LTQ-Orbitrap:

Linear trap quadrupole-Orbitrap

m/z :

Mass-to-charge ratio

MFA:

Metabolic flux analysis

MIPs:

Molecularly imprinted polymers

MP:

Mobile phase

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MS3:

Multistage fragmentation

MSE:

Elevated energy MS

MTBE:

Methyl tert-butyl ether

NCEs:

New chemical entities

NMR:

Nuclear resonance magnetic

NP:

Normal phase

OFAT:

One-factor-at-a-time

OT:

Orbitrap

PCA:

Principal component analysis

PRM:

Parallel reaction monitoring

QqQ:

Triple quadrupole

QqTOF:

Hybrid quadrupole time of flight

QTRAP:

Quadrupole-ion trap

re-TOF:

Ion reflector

RPLC:

Reverse phase liquid chromatography

SALLE:

Salting-out assisted liquid-liquid extraction

SBSE:

Stir-bar sorptive extraction

SLE:

Supported liquid extraction

SP:

Stationary phase

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

SRM:

Selected reaction monitoring

SWATH-MS:

Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra

TBA:

Tributylamine

TMA:

Trimethylamine

TMAO:

Trimethylamine N-oxide

TOF:

Time of flight

UHPLC:

Ultra-high-performance liquid chromatography

UPLC:

Ultra-performance liquid chromatography

References

  1. Horgan RP, Kenny LC (2011) “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 13:189–195. https://doi.org/10.1576/toag.13.3.189.27672

    Article  Google Scholar 

  2. Bedia C (2018) Experimental approaches in omic sciences. In: Comprehensive analytical chemistry. Elsevier B.V., pp 13–36. https://doi.org/10.1016/bs.coac.2018.07.002

    Chapter  Google Scholar 

  3. Godzien J, Gil de la Fuente A, Otero A, Barbas C (2018) Metabolite annotation and identification. In: Comprehensive analytical chemistry. Elsevier B.V., pp 415–445. https://doi.org/10.1016/bs.coac.2018.07.004

    Chapter  Google Scholar 

  4. Sindelar M, Patti GJ (2020) Chemical discovery in the era of metabolomics. J Am Chem Soc 142:9097–9105. https://doi.org/10.1021/jacs.9b13198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tebani A, Afonso C, Bekri S (2018) Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome. J Inherit Metab Dis 41:379–391. https://doi.org/10.1007/s10545-017-0074-y

    Article  PubMed  Google Scholar 

  6. Tebani A, Bekri S (2019) Paving the way to precision nutrition through metabolomics. Front Nutr 6:41. https://doi.org/10.3389/fnut.2019.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakaguchi CA, Nieman DC, Signini EF, Abreu RM, Catai AM (2019) Metabolomics-based studies assessing exercise-induced alterations of the human metabolome: a systematic review. Metabolites 9:164. https://doi.org/10.3390/metabo9080164

    Article  CAS  PubMed Central  Google Scholar 

  8. Ismail IT, Showalter MR, Fiehn O (2019) Inborn errors of metabolism in the era of untargeted metabolomics and lipidomics. Metabolites 9:242. https://doi.org/10.3390/metabo9100242

    Article  CAS  PubMed Central  Google Scholar 

  9. Mordaunt D, Cox D, Fuller M (2020) Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism. Int J Mol Sci 21:1195. https://doi.org/10.3390/ijms21041195

    Article  CAS  PubMed Central  Google Scholar 

  10. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307. https://doi.org/10.1016/j.mib.2004.04.012

    Article  CAS  PubMed  Google Scholar 

  11. Lazar AG, Romanciuc F, Socaciu MA, Socaciu C (2015) Bioinformatics tools for metabolomic data processing and analysis using untargeted liquid chromatography coupled with mass spectrometry. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 72:1843–1536. https://doi.org/10.15835/buasvmcn-asb:11536

    Article  Google Scholar 

  12. Kuehnbaum NL, Britz-Mckibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113:2437–2468. https://doi.org/10.1021/cr300484s

    Article  CAS  PubMed  Google Scholar 

  13. Rojo D, Barbas C, Rupérez FJ (2012) LC-MS metabolomics of polar compounds. Bioanalysis 4:1235–1243. https://doi.org/10.4155/bio.12.100

    Article  CAS  PubMed  Google Scholar 

  14. Troisi J, Cavallo P, Colucci A, Pierri L, Scala G, Symes S, Jones C, Richards S (2020) Metabolomics in genetic testing. In: Advances in clinical chemistry. Academic Press Inc, pp 85–153. https://doi.org/10.1016/bs.acc.2019.07.009

    Chapter  Google Scholar 

  15. Neubert H, Shuford CM, Olah TV, Garofolo F, Schultz GA, Jones BR, Amaravadi L, Laterza OF, Xu K, Ackermann BL (2020) Protein biomarker quantification by immunoaffinity liquid chromatography-tandem mass spectrometry: current state and future vision. Clin Chem 66:282–301. https://doi.org/10.1093/CLINCHEM/HVZ022

    Article  PubMed  Google Scholar 

  16. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric map**. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  PubMed  Google Scholar 

  17. Wilkins JM, Trushina E (2018) Application of metabolomics in Alzheimer’s disease. Front Neurol 8:1. https://doi.org/10.3389/fneur.2017.00719

    Article  Google Scholar 

  18. WHO (n.d.) Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 29 Oct 2020

  19. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S (2019) A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 234:16812–16823. https://doi.org/10.1002/jcp.28350

    Article  CAS  PubMed  Google Scholar 

  20. Gika H, Virgiliou C, Theodoridis G, Plumb RS, Wilson ID (2019) Untargeted LC/MS-based metabolic phenoty** (metabonomics/metabolomics): the state of the art. J Chromatogr B 1117:136–147

    Article  CAS  Google Scholar 

  21. Ortmayr K, Causon TJ, Hann S, Koellensperger G (2016) Increasing selectivity and coverage in LC-MS based metabolome analysis. TrAC – Trends Analyt Chem 82:358–366. https://doi.org/10.1016/j.trac.2016.06.011

    Article  CAS  Google Scholar 

  22. Zhou B, **ao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8:470–481. https://doi.org/10.1039/c1mb05350g

    Article  CAS  PubMed  Google Scholar 

  23. Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development. Wiley, New York. https://doi.org/10.1002/9781118592014

    Book  Google Scholar 

  24. Saurina J, Sentellas S (2017) Strategies for metabolite profiling based on liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 1044–1045:103–111. https://doi.org/10.1016/j.jchromb.2017.01.011

    Article  CAS  Google Scholar 

  25. Fekete S, Oláh E, Fekete J (2012) Fast liquid chromatography: the domination of core-shell and very fine particles. J Chromatogr A 1228:57–71. https://doi.org/10.1016/j.chroma.2011.09.050

    Article  CAS  PubMed  Google Scholar 

  26. Tang DQ, Zou L, Yin XX, Ong CN (2016) HILIC-MS for metabolomics: an attractive and complementary approach to RPLC-MS. Mass Spectrom Rev 35:574–600. https://doi.org/10.1002/mas.21445

    Article  CAS  PubMed  Google Scholar 

  27. Knee JM, Rzezniczak TZ, Barsch A, Guo KZ, Merritt TJS (2013) A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites. J Chromatogr B Anal Technol Biomed Life Sci 936:63–73. https://doi.org/10.1016/j.jchromb.2013.07.027

    Article  CAS  Google Scholar 

  28. Seifar RM, Ras C, Deshmukh AT, Bekers KM, Suarez-Mendez CA, da Cruz ALB, van Gulik WM, Heijnen JJ (2013) Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1311:115–120. https://doi.org/10.1016/j.chroma.2013.08.076

    Article  CAS  PubMed  Google Scholar 

  29. Schwaiger M, Rampler E, Hermann G, Miklos W, Berger W, Koellensperger G (2017) Anion-exchange chromatography coupled to high-resolution mass spectrometry: a powerful tool for merging targeted and non-targeted metabolomics. Anal Chem 89:7667–7674. https://doi.org/10.1021/acs.analchem.7b01624

    Article  CAS  PubMed  Google Scholar 

  30. Diop F, Vial T, Ferraris P, Wichit S, Bengue M, Hamel R, Talignani L, Liegeois F, Pompon J, Yssel H, Marti G, Missé D (2018) Zika virus infection modulates the metabolomic profile of microglial cells. PLoS One 13(10):e0206093. https://doi.org/10.1371/journal.pone.0206093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Licha D, Vidali S, Aminzadeh-Gohari S, Alka O, Breitkreuz L, Kohlbacher O, Reischl RJ, Feichtinger RG, Kofler B, Huber CG (2019) Untargeted metabolomics reveals molecular effects of ketogenic diet on healthy and tumor xenograft mouse models. Int J Mol Sci 20:3873. https://doi.org/10.3390/ijms20163873

    Article  CAS  PubMed Central  Google Scholar 

  32. D’Elia RV, Goodchild SA, Winder CL, Southam AD, Weber RJM, Stahl FM, Docx C, Patel V, Green AC, Viant MR, Lukaszewski RA, Dunn WB (2019) Multiple metabolic pathways are predictive of ricin intoxication in a rat model. Metabolomics 15:102. https://doi.org/10.1007/s11306-019-1547-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, Patti GJ (2018) Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem 410:1287–1297. https://doi.org/10.1007/s00216-017-0768-x

    Article  CAS  PubMed  Google Scholar 

  34. Haggarty J, Oppermann M, Dalby MJ, Burchmore RJ, Cook K, Weidt S, Burgess KEV (2015) Serially coupling hydrophobic interaction and reversed-phase chromatography with simultaneous gradients provides greater coverage of the metabolome. Metabolomics 11:1465–1470. https://doi.org/10.1007/s11306-014-0770-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Louw S, Pereira AS, Lynen F, Hanna-Brown M, Sandra P (2008) Serial coupling of reversed-phase and hydrophilic interaction liquid chromatography to broaden the elution window for the analysis of pharmaceutical compounds. J Chromatogr A 1208:90–94. https://doi.org/10.1016/j.chroma.2008.08.058

    Article  CAS  PubMed  Google Scholar 

  36. Greco G, Grosse S, Letzel T (2013) Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine. J Sep Sci 36:1379–1388. https://doi.org/10.1002/jssc.201200920

    Article  CAS  PubMed  Google Scholar 

  37. Schwaiger M, Schoeny H, El Abiead Y, Hermann G, Rampler E, Koellensperger G (2019) Merging metabolomics and lipidomics into one analytical run. Analyst 144:220–229. https://doi.org/10.1039/c8an01219a

    Article  CAS  Google Scholar 

  38. Stoll DR, Shoykhet K, Petersson P, Buckenmaier S (2017) Active solvent modulation: a valve-based approach to improve separation compatibility in two-dimensional liquid chromatography. Anal Chem 89:9260–9267. https://doi.org/10.1021/acs.analchem.7b02046

    Article  CAS  PubMed  Google Scholar 

  39. Song Q, Liu W, Chen X, Li J, Li P, Yang F, Wang Y, Song Y, Tu P (2018) Serially coupled reversed phase-hydrophilic interaction liquid chromatography–tailored multiple reaction monitoring, a fit-for-purpose tool for large-scale targeted metabolomics of medicinal bile. Anal Chim Acta 1037:119–129. https://doi.org/10.1016/j.aca.2017.11.072

    Article  CAS  PubMed  Google Scholar 

  40. Yan Y, Song Q, Chen X, Li J, Li P, Wang Y, Liu T, Song Y, Tu P (2017) Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reverse phase-hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1501:39–50. https://doi.org/10.1016/j.chroma.2017.04.034

    Article  CAS  PubMed  Google Scholar 

  41. Klassen A, Faccio AT, Canuto GAB, da Cruz PLR, Ribeiro HC, Tavares MFM, Sussulini A (2017) Metabolomics: definitions and significance in systems biology. In: Metabolomics: from fundamentals to clinical applications. Advances in experimental medicine and biology. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_1

    Chapter  Google Scholar 

  42. Montgomery DC (2012) Design and analysis of experiments, 8th edn. Wiley, New York. https://doi.org/10.1198/tech.2006.s372

    Book  Google Scholar 

  43. Contrepois K, Jiang L, Snyder M (2015) Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)–mass spectrometry. Mol Cell Proteomics 14:1684–1695. https://doi.org/10.1074/mcp.M114.046508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yanes O, Tautenhahn R, Patti GJ, Siuzdak G (2011) Expanding coverage of the metabolome for global metabolite profiling. Anal Chem 83:2152–2161. https://doi.org/10.1021/ac102981k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Creydt M, Fischer M (2017) Plant metabolomics: maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Anal Chem 89:10474–10486. https://doi.org/10.1021/acs.analchem.7b02592

    Article  CAS  PubMed  Google Scholar 

  46. Leardi R (2009) Experimental design in chemistry: a tutorial. Anal Chim Acta 652:161–172. https://doi.org/10.1016/j.aca.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  47. Ebrahimi-Najafabadi H, Leardi R, Jalali-Heravi M (2014) Experimental design in analytical chemistry – Part I: Theory. J AOAC Int 97:3–11. https://doi.org/10.5740/jaoacint.SGEEbrahimi1

    Article  CAS  PubMed  Google Scholar 

  48. Jacyna J, Kordalewska M, Markuszewski MJ (2019) Design of experiments in metabolomics-related studies: an overview. J Pharm Biomed Anal 164:598–606. https://doi.org/10.1016/j.jpba.2018.11.027

    Article  CAS  PubMed  Google Scholar 

  49. Rhoades SD, Weljie AM (2016) Comprehensive optimization of LC–MS metabolomics methods using design of experiments (COLMeD). Metabolomics 12:183. https://doi.org/10.1007/s11306-016-1132-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilon AC, Carnevale Neto F, Freire RT, Cardoso P, Carneiro RL, Da Silva Bolzani V, Castro-Gamboa I (2016) Partial least squares model and design of experiments toward the analysis of the metabolome of Jatropha gossypifolia leaves: extraction and chromatographic fingerprint optimization. J Sep Sci 39:1023–1030. https://doi.org/10.1002/jssc.201500892

    Article  CAS  PubMed  Google Scholar 

  51. Zheng H, Clausen MR, Dalsgaard TK, Mortensen G, Bertram HC (2013) Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal Chem 85:7109–7116. https://doi.org/10.1021/ac4020325

    Article  CAS  PubMed  Google Scholar 

  52. Peris-Díaz MD, Rodak O, Sweeney SR, Krężel A, Sentandreu E (2019) Chemometrics-assisted optimization of liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis for targeted metabolomics. Talanta 199:380–387. https://doi.org/10.1016/j.talanta.2019.02.075

    Article  CAS  PubMed  Google Scholar 

  53. Tebani A, Schmitz-Afonso I, Rutledge DN, Gonzalez BJ, Bekri S, Afonso C (2016) Optimization of a liquid chromatography ion mobility-mass spectrometry method for untargeted metabolomics using experimental design and multivariate data analysis. Anal Chim Acta 913:55–62. https://doi.org/10.1016/j.aca.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  54. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010) Metabolomics analysis II. Selection of biological samples and practical aspects preceding sample preparation. TrAC – Trends Analyt Chem 29:120–127

    Article  Google Scholar 

  55. Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548. https://doi.org/10.1007/s00216-012-6039-y

    Article  CAS  PubMed  Google Scholar 

  56. Raterink RJ, Lindenburg PW, Vreeken RJ, Ramautar R, Hankemeier T (2014) Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC – Trends Analyt Chem 61:157–167. https://doi.org/10.1016/j.trac.2014.06.003

    Article  CAS  Google Scholar 

  57. Tsakelidou E, Virgiliou C, Valianou L, Gika HG, Raikos N, Theodoridis G (2017) Sample preparation strategies for the effective quantitation of hydrophilic metabolites in serum by multi-targeted HILIC-MS/MS. Metabolites 7:13. https://doi.org/10.3390/metabo7020013

    Article  CAS  PubMed Central  Google Scholar 

  58. Stevens VL, Hoover E, Wang Y, Zanetti KA (2019) Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: a review. Metabolites 9:156. https://doi.org/10.3390/metabo9080156

    Article  CAS  PubMed Central  Google Scholar 

  59. Yin P, Xu G (2014) Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications. J Chromatogr A 1374:1–13. https://doi.org/10.1016/j.chroma.2014.11.050

    Article  CAS  PubMed  Google Scholar 

  60. Sánchez-López E, Crego AL, Marina ML (2017) Design of strategies to study the metabolic profile of highly polar compounds in plasma by reversed-phase liquid chromatography–high resolution mass spectrometry. J Chromatogr A 1490:156–165. https://doi.org/10.1016/j.chroma.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  61. Wawrzyniak R, Kosnowska A, Macioszek S, Bartoszewski R, Markuszewski MJ (2018) New plasma preparation approach to enrich metabolome coverage in untargeted metabolomics: plasma protein bound hydrophobic metabolite release with proteinase K. Sci Rep 8:9541. https://doi.org/10.1038/s41598-018-27983-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chan W, Zhao Y, Zhang J (2019) Evaluating the performance of sample preparation methods for ultra-performance liquid chromatography/mass spectrometry based serum metabonomics. Rapid Commun Mass Spectrom 33:561–568. https://doi.org/10.1002/rcm.8381

    Article  CAS  PubMed  Google Scholar 

  63. Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78:743–752. https://doi.org/10.1021/ac051312t

    Article  CAS  PubMed  Google Scholar 

  64. Ivanisevic J, Want EJ (2019) From samples to insights into metabolism: uncovering biologically relevant information in LC-HRMS metabolomics data. Metabolites 9:308. https://doi.org/10.3390/metabo9120308

    Article  CAS  PubMed Central  Google Scholar 

  65. Chetwynd AJ, Dunn WB, Rodriguez-Blanco G (2017) Collection and preparation of clinical samples for metabolomics. In: Metabolomics: from fundamentals to clinical applications. Advances in experimental medicine and biology. Springer, Cham, pp 19–44. https://doi.org/10.1007/978-3-319-47656-8_2

    Chapter  Google Scholar 

  66. Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD (2017) Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem 86:277–304. https://doi.org/10.1146/annurev-biochem-061516-044952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen S, Hoene M, Li J, Li Y, Zhao X, Häring HU, Schleicher ED, Weigert C, Xu G, Lehmann R (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A 1298:9–16. https://doi.org/10.1016/j.chroma.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  68. Godzien J, Ciborowski M, Whiley L, Legido-Quigley C, Ruperez FJ, Barbas C (2013) In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A 1304:52–60. https://doi.org/10.1016/j.chroma.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  69. Saric J, Want EJ, Duthaler U, Lewis M, Keiser J, Shockcor JP, Ross GA, Nicholson JK, Holmes E, Tavares MFM (2012) Systematic evaluation of extraction methods for multiplatform-based metaboty**: application to the Fasciola hepatica metabolome. Anal Chem 84:6963–6972. https://doi.org/10.1021/ac300586m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deda O, Chatziioannou AC, Fasoula S, Palachanis D, Raikos Ν, Theodoridis GA, Gika HG (2017) Sample preparation optimization in fecal metabolic profiling. J Chromatogr B Anal Technol Biomed Life Sci 1047:115–123. https://doi.org/10.1016/j.jchromb.2016.06.047

    Article  CAS  Google Scholar 

  71. Lee MS (2019) Wiley series on pharmaceutical science and biotechnology: practices, applications, and methods. Series Editor. http://www.wiley.com/go/permissions

    Google Scholar 

  72. Michopoulos F, Gika H, Palachanis D, Theodoridis G, Wilson ID (2015) Solid phase extraction methodology for UPLC-MS based metabolic profiling of urine samples. Electrophoresis 36:2170–2178. https://doi.org/10.1002/elps.201500101

    Article  CAS  PubMed  Google Scholar 

  73. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010) Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC – Trends Analyt Chem 29:111–119

    Article  Google Scholar 

  74. Rogeberg M, Malerod H, Roberg-Larsen H, Aass C, Wilson SR (2014) On-line solid phase extraction-liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J Pharm Biomed Anal 87:120–129. https://doi.org/10.1016/j.jpba.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  75. Calderón-Santiago M, Priego-Capote F, de Castro MDL (2015) Enhancing detection coverage in untargeted metabolomics analysis by solid-phase extraction on-line coupled to LC-MS/MS. Electrophoresis 36:2179–2187. https://doi.org/10.1002/elps.201500060

    Article  CAS  PubMed  Google Scholar 

  76. Tang YQ, Weng N (2013) Salting-out assisted liquid-liquid extraction for bioanalysis. Bioanalysis 5:1583–1598. https://doi.org/10.4155/bio.13.117

    Article  CAS  PubMed  Google Scholar 

  77. Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Souza Silva EA, Pawliszyn J (2014) Solid-phase microextraction in metabolomics. TrAC – Trends Analyt Chem 61:168–180. https://doi.org/10.1016/j.trac.2014.07.005

    Article  CAS  Google Scholar 

  78. Reyes-Garcés N, Gionfriddo E (2019) Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. TrAC – Trends Analyt Chem 113:172–181. https://doi.org/10.1016/j.trac.2019.01.009

    Article  CAS  Google Scholar 

  79. Hemmati M, Nix C, Crommen J, Servais AC, Fillet M (2020) Benefits of microsampling and microextraction for metabolomics studies. TrAC – Trends Analyt Chem 127:115899. https://doi.org/10.1016/j.trac.2020.115899

    Article  CAS  Google Scholar 

  80. Levernæs MCS, Farhat B, Oulie I, Abdullah SS, Paus E, Reubsaet L, Halvorsen TG (2019) Immunocapture sample clean-up in determination of low abundant protein biomarkers-a feasibility study of peptide capture by anti-protein antibodies. RSC Adv 9:34902–34911. https://doi.org/10.1039/c9ra05071j

    Article  CAS  Google Scholar 

  81. Chen L (2018) Current status of anti-drug antibody analysis using immunocapture-liquid chromatography/mass spectrometry. J Appl Bioanal 4:74–80. https://doi.org/10.17145/jab.18.011

    Article  CAS  Google Scholar 

  82. Fredolini C, Byström S, Pin E, Edfors F, Tamburro D, Iglesias MJ, Häggmark A, Hong MG, Uhlen M, Nilsson P, Schwenk JM (2016) Immunocapture strategies in translational proteomics. Expert Rev Proteomics 13:83–98. https://doi.org/10.1586/14789450.2016.1111141

    Article  CAS  PubMed  Google Scholar 

  83. Liu A (2019) Immunocapture in LC-MS bioanalysis. In: Sample preparation in LC‐MS bioanalysis. Wiley, pp 85–97. https://doi.org/10.1002/9781119274315.ch7

    Chapter  Google Scholar 

  84. Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM (2016) Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166:1324–1337.e11. https://doi.org/10.1016/j.cell.2016.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu X, Locasale JW (2017) Metabolomics: a primer. Trends Biochem Sci 42:274–284. https://doi.org/10.1016/j.tibs.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Nagana Gowda GA, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS (2019) Nmr spectroscopy for metabolomics research. Metabolites 9:123. https://doi.org/10.3390/metabo9070123

    Article  CAS  PubMed Central  Google Scholar 

  87. Liu X, Zhou L, Shi X, Xu G (2019) New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. TrAC – Trends Analyt Chem 121:115665. https://doi.org/10.1016/j.trac.2019.115665

    Article  CAS  Google Scholar 

  88. Wishart DS (2019) NMR metabolomics: a look ahead. J Magn Reson 306:155–161. https://doi.org/10.1016/j.jmr.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  89. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484. https://doi.org/10.1038/nrd.2016.32

    Article  CAS  PubMed  Google Scholar 

  90. Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA (2018) Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14:152. https://doi.org/10.1007/s11306-018-1449-2

    Article  CAS  PubMed  Google Scholar 

  91. Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008) Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr B Anal Technol Biomed Life Sci 871:143–163. https://doi.org/10.1016/j.jchromb.2008.07.004

    Article  CAS  Google Scholar 

  92. Ramautar R (2018) Chapter 1: Capillary electrophoresis-mass spectrometry for metabolomics – from metabolite analysis to metabolic profiling. In: Capillary electrophoresis–mass spectrometry for metabolomics. New developments in mass spectrometry. Royal Society of Chemistry, pp 1–20. https://doi.org/10.1039/9781788012737-00001

    Chapter  Google Scholar 

  93. Henry R, Cassel T (2012) Metabolomic applications of inductively coupled plasma-mass spectrometry (ICP-MS). Methods Pharmacol Toxicol 17:99–125. https://doi.org/10.1007/978-1-61779-618-0_5

    Article  CAS  Google Scholar 

  94. Haggarty J, Burgess KE (2017) Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol 43:77–85. https://doi.org/10.1016/j.copbio.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  95. Banerjee S, Mazumdar S (2012) Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012:1–40. https://doi.org/10.1155/2012/282574

    Article  CAS  Google Scholar 

  96. Tugizimana F, Steenkamp PA, Piater LA, Dubery IA (2018) Mass spectrometry in untargeted liquid chromatography/mass spectrometry metabolomics: electrospray ionisation parameters and global coverage of the metabolome. Rapid Commun Mass Spectrom 32:121–132. https://doi.org/10.1002/rcm.8010

    Article  CAS  PubMed  Google Scholar 

  97. Zhou J, Yin Y (2016) Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141:6362–6373. https://doi.org/10.1039/c6an01753c

    Article  CAS  PubMed  Google Scholar 

  98. Rochat B (2016) From targeted quantification to untargeted metabolomics: why LC-high-resolution-MS will become a key instrument in clinical labs. TrAC – Trends Analyt Chem 84:151–164. https://doi.org/10.1016/j.trac.2016.02.009

    Article  CAS  Google Scholar 

  99. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC – Trends Analyt Chem 82:425–442. https://doi.org/10.1016/j.trac.2016.07.004

    Article  CAS  Google Scholar 

  100. Che N, Ma Y, Ruan H, Xu L, Wang X, Yang X, Liu X (2018) Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clin Chim Acta 477:81–88. https://doi.org/10.1016/j.cca.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  101. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 1:Unit30.2. https://doi.org/10.1002/0471142727.mb3002s98

    Article  Google Scholar 

  102. Ren JL, Zhang AH, Kong L, Wang XJ (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8:22335–22350. https://doi.org/10.1039/c8ra01574k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gu H, Zhang P, Zhu J, Raftery D (2015) Globally optimized targeted mass spectrometry: reliable metabolomics analysis with broad coverage. Anal Chem 87:12355–12362. https://doi.org/10.1021/acs.analchem.5b03812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. https://doi.org/10.1038/nrm3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hopfgartner G (2007) Mass spectrometry in bioanalysis – methods, principles and instrumentation. In: Mass spectrometry in medicinal chemistry. Wiley Blackwell, pp 1–62. https://doi.org/10.1002/9783527610907.ch1

    Chapter  Google Scholar 

  106. Boesl U (2017) Time-of-flight mass spectrometry: introduction to the basics. Mass Spectrom Rev 36:86–109. https://doi.org/10.1002/mas.21520

    Article  CAS  PubMed  Google Scholar 

  107. Allen D, McWhinney B (2019) Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin Biochem Rev 40:135–146. https://doi.org/10.33176/aacb-19-00023

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ens W, Standing KG (2005) Hybrid quadrupole/time-of-flight mass spectrometers for analysis of biomolecules. Methods Enzymol 402:49–78. https://doi.org/10.1016/S0076-6879(05)02002-1

    Article  CAS  PubMed  Google Scholar 

  109. Campbell JL, Le Blanc JCY (2012) Using high-resolution quadrupole TOF technology in DMPK analyses. Bioanalysis 4:487–500. https://doi.org/10.4155/bio.12.14

    Article  CAS  PubMed  Google Scholar 

  110. Makarov A (2000) Electrostatic axially harmonic orbital trap**: a high-performance technique of mass analysis. Anal Chem 72:1156–1162. https://doi.org/10.1021/ac991131p

    Article  CAS  PubMed  Google Scholar 

  111. Scigelova M, Makarov A (2006) Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 6(Suppl 2):16–21. https://doi.org/10.1002/pmic.200600528

    Article  CAS  PubMed  Google Scholar 

  112. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH – MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126. https://doi.org/10.15252/msb.20178126

    Article  PubMed  PubMed Central  Google Scholar 

  113. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10:M111.011015. https://doi.org/10.1074/mcp.M111.011015

    Article  PubMed  PubMed Central  Google Scholar 

  114. Saint Hilaire PB, Rousseau K, Seyer A, Dechaumet S, Damont A, Junot C, Fenaille F (2020) Comparative evaluation of data dependent and data independent acquisition workflows implemented on an orbitrap fusion for untargeted metabolomics. Metabolites 10:158. https://doi.org/10.3390/metabo10040158

    Article  CAS  Google Scholar 

  115. Hecht ES, Scigelova M, Eliuk S, Makarov A (2019) Fundamentals and advances of orbitrap mass spectrometry. In: Encyclopedia of analytical chemistry. Wiley, pp 1–40. https://doi.org/10.1002/9780470027318.a9309.pub2

    Chapter  Google Scholar 

  116. Frese CK, Altelaar AFM, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJR, Mohammed S (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10:2377–2388. https://doi.org/10.1021/pr1011729

    Article  CAS  PubMed  Google Scholar 

  117. Pappireddi N, Martin L, Wühr M (2019) A review on quantitative multiplexed proteomics. ChemBioChem 20:1210–1224. https://doi.org/10.1002/cbic.201800650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Guo J, Huan T (2020) Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem 92:8072–8080. https://doi.org/10.1021/acs.analchem.9b05135

    Article  CAS  PubMed  Google Scholar 

  119. **e C, Zhong D, Yu K, Chen X (2012) Recent advances in metabolite identification and quantitative bioanalysis by LC-Q-TOF MS. Bioanalysis 4:937–959. https://doi.org/10.4155/bio.12.43

    Article  CAS  PubMed  Google Scholar 

  120. Ma S, Chowdhury SK (2013) Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis 5:1285–1297. https://doi.org/10.4155/bio.13.103

    Article  CAS  PubMed  Google Scholar 

  121. Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ (2010) Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal Chem 82:833–841. https://doi.org/10.1021/ac901801b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pino LK, Just SC, MacCoss MJ, Searle BC (2020) Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Mol Cell Proteomics 19:1088–1103. https://doi.org/10.1074/mcp.P119.001913

    Article  PubMed  PubMed Central  Google Scholar 

  123. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20:1989–1994. https://doi.org/10.1002/rcm.2550

    Article  CAS  PubMed  Google Scholar 

  124. Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719. https://doi.org/10.1002/pmic.200800564

    Article  CAS  PubMed  Google Scholar 

  125. Shliaha PV, Bond NJ, Gatto L, Lilley KS (2013) Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J Proteome Res 12:2323–2339. https://doi.org/10.1021/pr300775k

    Article  CAS  PubMed  Google Scholar 

  126. Chaleckis R, Naz S, Meister I, Wheelock CE (2018) LC-MS-based metabolomics of biofluids using all-ion fragmentation (AIF) acquisition. In: Methods in molecular biology. Humana Press Inc, pp 45–58. https://doi.org/10.1007/978-1-4939-7592-1_3

    Chapter  Google Scholar 

  127. Geiger T, Cox J, Mann M (2010) Proteomics on an orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252–2261. https://doi.org/10.1074/mcp.M110.001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C (2017) Navigating freely-available software tools for metabolomics analysis. Metabolomics 13:106. https://doi.org/10.1007/s11306-017-1242-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C (2017) Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: where do we stand? J Chromatogr A 1526:1–12. https://doi.org/10.1016/j.chroma.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  130. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  131. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bertsch A, Gröpl C, Reinert K, Kohlbacher O (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367. https://doi.org/10.1007/978-1-60761-987-1_23

    Article  CAS  PubMed  Google Scholar 

  133. Lommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1

    Article  CAS  PubMed  Google Scholar 

  134. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vandergheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. O’Shea K, Misra BB (2020) Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 16:36. https://doi.org/10.1007/s11306-020-01657-3

    Article  CAS  PubMed  Google Scholar 

  136. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Melamud E, Vastag L, Rabinowitz JD (2010) Metabolomic analysis and visualization engine for LC – MS data. Anal Chem 82:9818–9826. https://doi.org/10.1021/ac1021166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. **a J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257. https://doi.org/10.1093/nar/gkv380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, Duperier C, Tremblay-Franco M, Martin JF, Jacob D, Goulitquer S, Thévenot EA, Caron C (2015) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495. https://doi.org/10.1093/bioinformatics/btu813

    Article  CAS  PubMed  Google Scholar 

  140. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751. https://doi.org/10.1097/01.ftd.0000179845.53213.39

    Article  CAS  PubMed  Google Scholar 

  141. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, **a J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807. https://doi.org/10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  142. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

  143. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3. https://doi.org/10.1186/s13321-016-0115-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. WHO, International Programme on Chemical Safety (2001) Biomarkers in risk assessment: validity and validation. Environmental health criteria series, vol 222. WHO, Geneva. https://apps.who.int/iris/handle/10665/42363

    Google Scholar 

  145. Strumbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. https://doi.org/10.1097/COH.0b013e32833ed177.What

    Article  Google Scholar 

  146. Puntmann VO (2009) How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgrad Med J 85:538–545. https://doi.org/10.1136/pgmj.2008.073759

    Article  CAS  PubMed  Google Scholar 

  147. Jain KK (2010) The handbook of biomarkers. Springer Science and Business Media, Basel. https://doi.org/10.1007/978-1-60761-685-6

    Book  Google Scholar 

  148. Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P (2013) Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem 20:257–271. https://doi.org/10.2174/092986713804806621

    Article  CAS  PubMed  Google Scholar 

  149. Marchand CR, Farshidfar F, Rattner J, Bathe OF (2018) A framework for development of useful metabolomic biomarkers and their effective knowledge translation. Metabolites 8:59. https://doi.org/10.3390/metabo8040059

    Article  CAS  PubMed Central  Google Scholar 

  150. **a J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299. https://doi.org/10.1007/s11306-012-0482-9

    Article  CAS  PubMed  Google Scholar 

  151. Pepe MS, Etzioni R, Feng Z, Potter JD, Lou M, Thornquist M, Winget M, Yasui Y (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93:1054–1061. https://doi.org/10.1093/jnci/93.14.1054

    Article  CAS  PubMed  Google Scholar 

  152. Food and Drug Administration (2018) Biomarker qualification program. https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/biomarker-qualification-program. Accessed 13 Oct 2020

  153. European Medicines Agency (2020) Biomarker qualification. https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-advice-protocol-assistance/novel-methodologies-biomarkers/opinions-letterssupport-qualification-novel-methodologies-medicine-development. Accessed 13 Oct 2020

  154. Lindahl A, Forshed J, Nordström A (2016) Overlap in serum metabolic profiles between non-related diseases: implications for LC-MS metabolomics biomarker discovery. Biochem Biophys Res Commun 478:1472–1477. https://doi.org/10.1016/j.bbrc.2016.08.155

    Article  CAS  PubMed  Google Scholar 

  155. Ioannidis JPA, Bossuyt PMM (2017) Waste, leaks, and failures in the biomarker pipeline. Clin Chem 63:963–972. https://doi.org/10.1373/clinchem.2016.254649

    Article  CAS  PubMed  Google Scholar 

  156. Guasti L, Galliazzo S, Molaro M, Visconti E, Pennella B, Gaudio GV, Lupi A, Grandi AM, Squizzato A (2021) TMAO as a biomarker of cardiovascular events: a systematic review and meta-analysis. Intern Emerg Med 16(1):201–207. https://doi.org/10.1007/s11739-020-02470-5

    Article  PubMed  Google Scholar 

  157. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, Didonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang Z, Tang WHW, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. https://doi.org/10.1093/eurheartj/ehu002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, Lusis AJ, Hazen SL (2015) Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 290:5647–5660. https://doi.org/10.1074/jbc.M114.618249

    Article  CAS  PubMed  Google Scholar 

  161. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z, Sacks J, Rong X, Vallim TA, Chou J, Ivanova PT, Myers DS, Brown HA, Lee RG, Crooke RM, Graham MJ, Liu X, Parini P, Tontonoz P, Lusis AJ, Hazen SL, Temel RE, Brown JM (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10:326–338. https://doi.org/10.1016/j.celrep.2014.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M (2018) Implication of trimethylamine n-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10:1398. https://doi.org/10.3390/nu10101398

    Article  CAS  PubMed Central  Google Scholar 

  163. Zhu Y, Li Q, Jiang H (2020) Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS 128:353–366. https://doi.org/10.1111/apm.13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F (2018) Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci 19:3228. https://doi.org/10.3390/ijms19103228

    Article  CAS  PubMed Central  Google Scholar 

  165. Ufnal M, Zadlo A, Ostaszewski R (2015) TMAO: a small molecule of great expectations. Nutrition 31:1317–1323. https://doi.org/10.1016/j.nut.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  166. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of develo** diabetes. Nat Med 17:448–453. https://doi.org/10.1038/nm.2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Klein MS, Shearer J (2016) Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res 2016:3898502. https://doi.org/10.1155/2016/3898502

    Article  CAS  PubMed  Google Scholar 

  168. Pallares-Méndez R, Aguilar-Salinas CA, Cruz-Bautista I, Del Bosque-Plata L (2016) Metabolomics in diabetes, a review. Ann Med 48:89–102. https://doi.org/10.3109/07853890.2015.1137630

    Article  CAS  PubMed  Google Scholar 

  169. Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39:833–846. https://doi.org/10.2337/dc15-2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Satheesh G, Ramachandran S, Jaleel A (2020) Metabolomics-based prospective studies and prediction of type 2 diabetes mellitus risks. Metab Syndr Relat Disord 18:1–9. https://doi.org/10.1089/met.2019.0047

    Article  PubMed  Google Scholar 

  171. Sun Y, Gao HY, Fan ZY, He Y, Yan YX (2020) Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J Clin Endocrinol Metab 105:1000–1008. https://doi.org/10.1210/clinem/dgz240

    Article  Google Scholar 

  172. Arneth B, Arneth R, Shams M (2019) Metabolomics of type 1 and type 2 diabetes. Int J Mol Sci 20:1–14. https://doi.org/10.3390/ijms20102467

    Article  CAS  Google Scholar 

  173. Shi X, ** B, Jasbi P, Turner C, ** Y, Gu H (2020) Comprehensive isotopic targeted mass spectrometry: reliable metabolic flux analysis with broad coverage. Anal Chem 92:11728–11738. https://doi.org/10.1021/acs.analchem.0c01767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Badur MG, Metallo CM (2018) Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metab Eng 45:95–108. https://doi.org/10.1016/j.ymben.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  175. Cascante M, Benito A, Marín de Mas I, Centelles JJ, Miranda A, de Atauri P (2014) Fluxomics. In: A systems biology approach to study metabolic syndrome. Springer International Publishing, pp 237–250. https://doi.org/10.1007/978-3-319-01008-3_12

    Chapter  Google Scholar 

  176. Basler G, Fernie AR, Nikoloski Z (2018) Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Biosci Rep 38:BSR20170224. https://doi.org/10.1042/BSR20170224

    Article  PubMed  PubMed Central  Google Scholar 

  177. Heux S, Bergès C, Millard P, Portais JC, Létisse F (2017) Recent advances in high-throughput 13C-fluxomics. Curr Opin Biotechnol 43:104–109. https://doi.org/10.1016/j.copbio.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  178. Antoniewicz MR (2018) A guide to 13C metabolic flux analysis for the cancer biologist. Exp Mol Med 50:19. https://doi.org/10.1038/s12276-018-0060-y

    Article  CAS  PubMed Central  Google Scholar 

  179. Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23:28–33. https://doi.org/10.1016/j.tibtech.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  180. Klein S, Heinzle E (2012) Isotope labeling experiments in metabolomics and fluxomics. Wiley Interdiscip Rev Syst Biol Med 4:261–272. https://doi.org/10.1002/wsbm.1167

    Article  CAS  PubMed  Google Scholar 

  181. Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81. https://doi.org/10.1042/bse0450067/853546/bse0450067.pdf

    Article  CAS  PubMed  Google Scholar 

  182. Cheah YE, Young JD (2018) Isotopically nonstationary metabolic flux analysis (INST-MFA): putting theory into practice. Curr Opin Biotechnol 54:80–87. https://doi.org/10.1016/j.copbio.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  183. Lee WD, Mukha D, Aizenshtein E, Shlomi T (2019) Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells. Nat Commun 10:1351. https://doi.org/10.1038/s41467-019-09352-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang Y, Kwon H, Su X, Wondisford FE (2020) Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol Metab 31:36–44. https://doi.org/10.1016/j.molmet.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  185. Allen DK, Young JD (2020) Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol 64:92–100. https://doi.org/10.1016/j.copbio.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  186. Lemberg KM, Zhao L, Wu Y, Veeravalli V, Alt J, Aguilar JMH, Dash RP, Lam J, Tenora L, Rodriguez C, Nedelcovych MT, Brayton C, Majer P, Blakeley JO, Rais R, Slusher BS (2020) The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol Cancer Ther 19:397–408. https://doi.org/10.1158/1535-7163.MCT-19-0319

    Article  CAS  PubMed  Google Scholar 

  187. Bian X, Qian Y, Tan B, Li K, Hong X, Wong CC, Fu L, Zhang J, Li N, Wu JL (2020) In-depth map** carboxylic acid metabolome reveals the potential biomarkers in colorectal cancer through characteristic fragment ions and metabolic flux. Anal Chim Acta 1128:62–71. https://doi.org/10.1016/j.aca.2020.06.064

    Article  CAS  PubMed  Google Scholar 

  188. Olson WJ, Di Genova BM, Gallego-Lopez G, Dawson AR, Stevenson D, Amador-Noguez D, Knoll LJ (2020) Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLoS Pathog 16:e1008432. https://doi.org/10.1371/journal.ppat.1008432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sweeney SR, Collins M, Pandey R, Chiou J, Lodi A, Tiziani S (2020) Identification of a synergistic combination of dimethylaminoparthenolide and shikonin alters metabolism and inhibits proliferation of pediatric precursor-B cell acute lymphoblastic leukemia. Mol Carcinog 59:399–411. https://doi.org/10.1002/mc.23163

    Article  CAS  PubMed  Google Scholar 

  190. Lee SC, Shestov AA, Guo L, Zhang Q, Roman JC, Liu X, Wang HY, Pickup S, Nat K, Lu P, Hofbauer S, Mesaros C, Wang YL, Nelson DS, Schuster SJ, Blair IA, Glickson JD, Wasik MA (2019) Metabolic detection of Bruton’s tyrosine kinase inhibition in mantle cell lymphoma cells. Mol Cancer Res 17:1365–1377. https://doi.org/10.1158/1541-7786.MCR-18-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. McCalley S, Pirman D, Clasquin M, Johnson K, ** S, Vockley J (2019) Metabolic analysis reveals evidence for branched chain amino acid catabolism crosstalk and the potential for improved treatment of organic acidurias. Mol Genet Metab 128:57–61. https://doi.org/10.1016/j.ymgme.2019.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Johnston K, Kim DH, Kerkhoven EJ, Burchmore R, Barrett MP, Achcar F (2019) Map** the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U-13C-labelled substrates and LC–MS. Biosci Rep 39:BSR20181601. https://doi.org/10.1042/BSR20181601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Muthu M, Kumar R, Khaja ASS, Gilthorpe JD, Persson JL, Nordström A (2019) Glul ablation can confer drug resistance to cancer cells via a malate-aspartate shuttle-mediated mechanism. Cancers (Basel) 11:1945. https://doi.org/10.3390/cancers11121945

    Article  CAS  Google Scholar 

  194. Vantaku V, Amara CS, Piyarathna DWB, Donepudi SR, Ambati CR, Putluri V, Tang W, Rajapakshe K, Estecio MR, Terris MK, Castro PD, Ittmann MM, Williams SB, Lerner SP, Sreekumar A, Bollag R, Coarfa C, Kornberg MD, Lotan Y, Ambs S, Putluri N (2019) DNA methylation patterns in bladder tumors of African American patients point to distinct alterations in xenobiotic metabolism. Carcinogenesis 40:1332–1340. https://doi.org/10.1093/carcin/bgz128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim J, Jonus HC, Zastre JA, Bartlett MG (2019) Development of an IPRP-LC-MS/MS method to determine the fate of intracellular thiamine in cancer cells. J Chromatogr B Anal Technol Biomed Life Sci 1124:247–255. https://doi.org/10.1016/j.jchromb.2019.05.037

    Article  CAS  Google Scholar 

  196. Held NM, Kuipers EN, Van Weeghel M, Van Klinken JB, Denis SW, Lombès M, Wanders RJ, Vaz FM, Rensen PCN, Verhoeven AJ, Boon MR, Houtkooper RH (2018) Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation. Sci Rep 8:9562. https://doi.org/10.1038/s41598-018-27875-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D (2018) Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 14:e1007475. https://doi.org/10.1371/journal.ppat.1007475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kovářová J, Pountain AW, Wildridge D, Weidt S, Bringaud F, Burchmore RJS, Achcar F, Barrett MP (2018) Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathog 14:e1006953. https://doi.org/10.1371/journal.ppat.1006953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gelman SJ, Naser F, Mahieu NG, McKenzie LD, Dunn GP, Chheda MG, Patti GJ (2018) Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress. Cell Rep 22:512–522. https://doi.org/10.1016/j.celrep.2017.12.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Steketee PC, Vincent IM, Achcar F, Giordani F, Kim DH, Creek DJ, Freund Y, Jacobs R, Rattigan K, Horn D, Field MC, MacLeod A, Barrett MP (2018) Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Negl Trop Dis 12:e0006450. https://doi.org/10.1371/journal.pntd.0006450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chatzispyrou IA, Guerrero-Castillo S, Held NM, Ruiter JPN, Denis SW, IJlst L, Wanders RJ, van Weeghel M, Ferdinandusse S, Vaz FM, Brandt U, Houtkooper RH (2018) Barth syndrome cells display widespread remodeling of mitochondrial complexes without affecting metabolic flux distribution. Biochim Biophys Acta Mol basis Dis 1864:3650–3658. https://doi.org/10.1016/j.bbadis.2018.08.041

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina V. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furlani, I.L., da Cruz Nunes, E., Canuto, G.A.B., Macedo, A.N., Oliveira, R.V. (2021). Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview. In: Colnaghi Simionato, A.V. (eds) Separation Techniques Applied to Omics Sciences. Advances in Experimental Medicine and Biology(), vol 1336. Springer, Cham. https://doi.org/10.1007/978-3-030-77252-9_10

Download citation

Publish with us

Policies and ethics

Navigation