Survey on Existing SpaceFibre-Based Solutions

  • Chapter
  • First Online:
Next-Generation High-Speed Satellite Interconnect

Abstract

In this chapter, we will survey all the existing SpaceFibre-based products. First, we will give an overview of the state-of-the-art FPGA technology in the space domain able to host a SpaceFibre interface. We will then present and compare the available solution for SpaceFibre CoDecs, routing switches and Electrical Ground Segment Equipment. We aim to provide a valid survey and analysis on the technology available in the literature and on the market: doing so we will demonstrate the increasing interest that the SpaceFibre protocol is gaining and, on the other side, we will foster the adoption of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Normand, E. (1996). Single-event effects in avionics. IEEE Transactions on nuclear science, 43(2), 461–474.

    Article  Google Scholar 

  2. Bruguier, G., & Palau, J. M. (1996). Single particle-induced latchup. IEEE Transactions on Nuclear Science, 43(2), 522–532.

    Article  Google Scholar 

  3. Xu, Y. N., Xu, G. B., Wang, H. B., Chen, L., Bi, J. S., & Liu, M. (2017). Total ionization dose effects on charge-trap** memory with al 2 o 3/hfo 2/al 2 o 3 trilayer structure. IEEE Transactions on Nuclear Science, 65(1), 200–205.

    Google Scholar 

  4. Nannipieri, P., Leoni, A., & Fanucci, L. (2019). VHDL design of a SpaceFibre routing switch. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E102A(5), 729–731.

    Google Scholar 

  5. McClements, C., McLaren, D., Youssef, B., Ali, M. S., Florit, A. F., Parkes, S., & Villafranca, A. G. (2016). SpaceWire and SpaceFibre on the microsemi RTG4 FPGA. In: 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 2016-June.

    Google Scholar 

  6. European Cooperation for Space Standardisation. (2019). SpaceFibre – Very high-speed serial link, ECSS-E-ST-50-11C. European Cooperation for Space Standardisation.

    Google Scholar 

  7. Nannipieri, P., Marino, A., Fanucci, L., Dinelli, G., & Dello Sterpaio, L. (2020). The very high-speed SpaceFibre multi-lane codec: Implementation and experimental performance evaluation. Acta Astronautica, 179, 462–470.

    Google Scholar 

  8. Dinelli, G., Marino, A., Dello Sterpaio, L., Leoni, A., Fanucci, L., Nannipieri, P., & Davalle, D. (2020). A serial high-speed satellite communication codec: design and implementation of a SpaceFibre interface. Acta Astronautica, 169, 206–215.

    Article  Google Scholar 

  9. Leoni, A., Dello Sterpaio, L., Davalle, D., & Fanucci, L. (2016). Design and implementation of test equipment for SpaceFibre links: Spacefibre, short paper. In: 2016 International SpaceWire Conference (SpaceWire), Yokohama, Japan.

    Google Scholar 

  10. Winokur, P. S., Fleetwood, D. M., & Dodd, P. E. (2000). An overview of radiation effects on electronics in the space telecommunications environment. Microelectronics Reliability, 40(1), 17–26.

    Article  Google Scholar 

  11. European Cooperation for Space Standardization (ECSS). (2016). Techniques for radiation effects mitigation in ASICs and FPGAs handbook. ECSS.

    Google Scholar 

  12. Bentoutou, Y. (2012). A real time EDAC system for applications onboard earth observation small satellites. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 648–657.

    Article  Google Scholar 

  13. Ramos, J., Samudrala, P. K., & Katkoori, S. (2004). Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs. IEEE transactions on Nuclear Science, 51(5), 2957–2969.

    Article  Google Scholar 

  14. Microsemi. Microsemi rtg4 datasheet. https://www.microsemi.com/product-directory/rad-tolerant-fpgas/3576-rtg4

  15. NanoXlore. Nanoxlore NG-Large datasheet. Available online: https://www.nanoxplore.com/uploads/NanoXplore_NG-LARGE_Datasheet_v1.0.pdf

  16. **linx. **linx Kintex usage for space application. Available online: https://www.xilinx.com/products/silicon-devices/fpga/rt-kintex-ultrascale.html

  17. **linx. **linx Kintex ultrascale datasheet. https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf

  18. Casas, M. F., Parkes, S., Villafranca, A. G., Florit, A. F., & McClements, C. (2020). Spacefibre for FPGA: IPs and radiation test results. In: 29th Annual Single Event Effects (SEE) Symposium coupled with the Military and Aerospace Programmable Logic Devices (MAPLD) Workshop).

    Google Scholar 

  19. Villafranca, A. G., Parkes, S., & Florit, A. F. (2016). Spacefibre multi-lane: Spacefibre, long paper, In: 2016 International SpaceWire Conference (SpaceWire), pp. 1–8, http://dx.doi.org/10.1109/SpaceWire.2016.7771647

    Google Scholar 

  20. ESA. ESA HDL IP cores portfolio overview. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/ESA_HDL_IP_Cores_Portfolio_Overview

  21. Yu, P., George, J., & Koga, R. (2008). Single event effects and total dose test results for TI TLK2711 transceiver. In: 2008 IEEE Radiation Effects Data Workshop, pp. 69–75.

    Google Scholar 

  22. Nannipieri, P., Marino, A., Dello Sterpaio, L., & Fanucci, L. (2019). Design of a spacewire/spacefibre EGSE system based on PXI industry standard. In: 2019 IEEE International Workshop on Metrology for AeroSpace, pp. 1–5. IEEE.

    Google Scholar 

  23. Marino, A., Nannipieri, P., Dinelli, G., Davalle, D., Dello Sterpaio, L., & Fanucci, L. (2019). A complete egse solution for the spacewire and spacefibre protocol based on the PXI industry standard. Sensors, 19(22), 5013.

    Article  Google Scholar 

  24. Florit, A. F., Villafranca, A. G., McClements, C., Parkes, S., & McLaren, D. (2017). SpaceFibre network and routing switch. In: 2017 IEEE Aerospace Conference, Big Sky, MT, USA.

    Google Scholar 

  25. Villafranca, A. G., Parkes, S., Florit, A. F., & McClements, C. (2018). Spacefibre interface and routing switch IP cores. In: 2018 International SpaceWire Conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nannipieri, P., Dinelli, G., Dello Sterpaio, L., Marino, A., Fanucci, L. (2021). Survey on Existing SpaceFibre-Based Solutions. In: Next-Generation High-Speed Satellite Interconnect. Springer, Cham. https://doi.org/10.1007/978-3-030-77044-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77044-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77043-3

  • Online ISBN: 978-3-030-77044-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation