Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier–Stokes Problem

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 143))

  • 653 Accesses

Abstract

This article introduces a collocated finite-volume method for the incompressible Navier–Stokes equations. Based on the linearity assumption of the velocity and pressure unknowns, the coupled one-sided flux expression is derived. Analysis and correction of the eigenvalues in the matrix coefficients of the vector flux expression result in the inf-sup stable method. A single continuous flux expression follows from the continuity of the one-sided flux approximations. As a result, the conservation for the momentum and the divergence is discretely exact. The method handles general polyhedral meshes but requires an artificial pressure boundary condition for the pressure gradient reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLOS One 15(7), e0235392 (2020)

    Article  Google Scholar 

  2. Braack, M., Richter, T.: Solutions of 3d Navier–Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35(4), 372–392 (2006)

    Article  Google Scholar 

  3. Ethier, C., Steinman, D.: Exact fully 3D Navier–Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19(5), 369–375 (1994)

    Article  Google Scholar 

  4. Gresho, P., Sani, R.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1111–1145 (1987)

    Article  Google Scholar 

  5. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  Google Scholar 

  6. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow, vol. 12. Gordon & Breach, New York (1969)

    MATH  Google Scholar 

  7. Lebedev, V.: Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I. USSR Comput. Math. Math. Phys. 4(3), 69–92 (1964)

    Article  Google Scholar 

  8. Olshanskii, M., Terekhov, K., Vassilevski, Y.: An octree-based solver for the incompressible Navier–Stokes equations with enhanced stability and low dissipation. Comput. Fluids 84, 231–246 (2013)

    Article  MathSciNet  Google Scholar 

  9. Perot, B.: Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159(1), 58–89 (2000)

    Article  MathSciNet  Google Scholar 

  10. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)

    Article  Google Scholar 

  11. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel E.H. (eds.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 48, pp. 547–566. Vieweg+Teubner Verlag, Berlin (1996)

    Chapter  Google Scholar 

  12. Terekhov, K.: Collocated finite-volume method for the incompressible Navier-Stokes problem. J. Numer. Math. 1(ahead-of-print) (2020)

    Google Scholar 

  13. Terekhov, K.: Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform. Russ. J. Numer. Anal. Math. Model. 35(4), 223–237 (2020)

    Article  MathSciNet  Google Scholar 

  14. Terekhov, K.: Parallel multilevel linear solver within INMOST platform. In: Voevodin V., Sobolev S. (eds.) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science. Springer, Cham (2020)

    Google Scholar 

  15. Terekhov, K., Vassilevski, Y.: Finite volume method for coupled subsurface flow problems, I: Darcy problem. J. Comput. Phys. 395, 298–306 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Terekhov, K., Vassilevski, Y.: INMOST parallel platform for mathematical modeling and applications. In: Voevodin V., Sobolev S. (eds.) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol. 965, pp. 230–241. Springer, Cham (2019)

    Google Scholar 

  17. Terekhov, K., Vassilevski, Y.: Mesh modification and adaptation within INMOST programming platform. In: Garanzha V., Kamenski L., Si H. (eds.) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol. 131, pp. 243–255. Springer, Cham (2019)

    Chapter  Google Scholar 

  18. Vassilevski, Y., Terekhov, K., Nikitin, K., Kapyrin, I.: Parallel Finite Volume Computation on General Meshes. Springer International Publishing, New York (2020). https://books.google.ru/books?id=hYvtDwAAQBAJ

    Book  Google Scholar 

Download references

Acknowledgement

This work was supported by the Russian Science Foundation through the grant 19-71-10094.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Terekhov, K.M. (2021). Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier–Stokes Problem. In: Garanzha, V.A., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-76798-3_23

Download citation

Publish with us

Policies and ethics

Navigation