Evolving Virtual Embodied Agents Using External Artifact Evaluations

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC/Benelearn 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1398))

Included in the following conference series:

Abstract

We present neatures, a computational art system exploring the potential of digitally evolving artificial organisms for generating aesthetically pleasing artifacts. Hexapedal agents act in a virtual environment, which they can sense and manipulate through painting. Their cognitive models are designed in accordance with theory of situated cognition. Two experimental setups are investigated: painting with a narrow- and wide perspective vision sensor. Populations of agents are optimized for the aesthetic quality of their work using a complexity-based fitness function that solely evaluates the artifact. We show that external evaluation of artifacts can evolve behaviors that produce fit artworks. Our results suggest that wide-perspective vision may be more suited for maximizing aesthetic fitness while narrow-perspective vision induces more behavioral complexity and artifact diversity. We recognize that both setups evolve distinct strategies with their own merits. We further discuss our findings and propose future directions for the current approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Neatures is open-source and available at https://github.com/lshoek/creative-evo-simulator.

References

  1. Beer, R.D., Chiel, H.J., Sterling, L.S.: A biological perspective on autonomous agent design. Robot. Auton. Syst. 6(1–2), 169–186 (1990)

    Article  Google Scholar 

  2. Bentley, P.J.: Is evolution creative. In: Proceedings of the AISB, vol. 99, pp. 28–34 (1999)

    Google Scholar 

  3. Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

    Book  Google Scholar 

  4. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, Hove (1990)

    Google Scholar 

  5. Brinck, I.: Situated cognition, dynamic systems, and art: on artistic creativity and aesthetic experience. Janus Head 9(2), 407–431 (2007)

    Article  Google Scholar 

  6. Clancey, W.J.: Situated Cognition: On Human Knowledge and Computer Representations. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Clark, A., Chalmers, D.: The extended mind. Analysis 58(1), 7–19 (1998)

    Article  Google Scholar 

  8. Colton, S., Wiggins, G.A., et al.: Computational creativity: the final frontier? In: ECAI, Montpelier, vol. 12, pp. 21–26 (2012)

    Google Scholar 

  9. Coumans, E.: Bullet Physics Library (2013). https://github.com/bulletphysics/bullet3

  10. Dennett, D.C., Dennett, D.C.: Darwin’s Dangerous Idea: Evolution and the Meanings of Life. Simon and Schuster, New York (1996)

    Google Scholar 

  11. Deussen, O., Lindemeier, T., Pirk, S., Tautzenberger, M.: Feedback-guided stroke placement for a painting machine. CAe 8 (2012)

    Google Scholar 

  12. Diamond, J.: Animal art: variation in bower decorating style among male bowerbirds Amblyornis inornatus. Proc. Natl. Acad. Sci. 83(9), 3042–3046 (1986)

    Article  Google Scholar 

  13. Dohm, K., Stahlhut, H., Hoffmann, J.: Kunstmaschinen Maschinenkunst. Kehrer Verlag (2007)

    Google Scholar 

  14. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Gener. Comput. Syst. 16(8), 851–871 (2000)

    Article  Google Scholar 

  15. Futuyma, D.J.: Natural selection and adaptation. Evolution, pp. 279–301 (2009)

    Google Scholar 

  16. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9_10

    Chapter  Google Scholar 

  17. Galanter, P.: Generative art theory. In: A Companion to Digital Art (2016)

    Google Scholar 

  18. Goldberg, D.E.: The race, the hurdle, and the sweet spot. In: Evolutionary Design by Computers (1999)

    Google Scholar 

  19. Ha, D., Schmidhuber, J.: World models (2018). ar**v:1803.10122

  20. Hansen, N.: The CMA evolution strategy: a tutorial (2016). ar**v:1604.00772

  21. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on Github

    Google Scholar 

  22. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: GECCO, pp. 1689–1696 (2010)

    Google Scholar 

  23. Hoenig, F.: Defining computational aesthetics. The Eurographics Association (2005)

    Google Scholar 

  24. Hülse, M., Wischmann, S., Manoonpong, P., von Twickel, A., Pasemann, F.: Dynamical systems in the sensorimotor loop: on the interrelation between internal and external mechanisms of evolved robot behavior. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.) 50 Years of Artificial Intelligence. LNCS (LNAI), vol. 4850, pp. 186–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77296-5_18

    Chapter  Google Scholar 

  25. Krčah, P.: Evolution and learning of virtual robots. Ph.D. thesis, Univerzita Karlova (2016)

    Google Scholar 

  26. Langton, C.G.: Artificial Life: An Overview. MIT Press, Cambridge (1997)

    Google Scholar 

  27. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  28. Lehman, J., et al.: The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26(2), 274–306 (2020)

    Article  Google Scholar 

  29. Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002). https://doi.org/10.1023/A:1013662402341

    Article  MATH  Google Scholar 

  30. Machado, P., Romero, J., Nadal, M., Santos, A., Correia, J., Carballal, A.: Computerized measures of visual complexity. Acta Physiol. 160, 43–57 (2015)

    Google Scholar 

  31. Matsuura, K.: A new pufferfish of the genus Torquigener that builds “mystery circles” on sandy bottoms in the Ryukyu Islands, Japan (Actinopterygii: Tetraodontiformes: Tetraodontidae). Ichthyol. Res. 62(2), 207–212 (2015). https://doi.org/10.1007/s10228-014-0428-5

    Article  Google Scholar 

  32. McCormack, J.: Niche constructing drawing robots. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 201–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_14

    Chapter  Google Scholar 

  33. McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learning. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) EvoMUSART 2020. LNCS, vol. 12103, pp. 118–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43859-3_9

    Chapter  Google Scholar 

  34. Moura, L.: A new kind of art: the robotic action painter. In: X Generative Art Conference. Politecnico di Milano University (2007)

    Google Scholar 

  35. Nake, F.: Information aesthetics: an heroic experiment. J. Math. Arts 6(2–3), 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  36. Redies, C.: Combining universal beauty and cultural context in a unifying model of visual aesthetic experience. Front. Hum. Neurosci. 9, 218 (2015)

    Article  Google Scholar 

  37. Scha, R., Bod, R.: Computationele Esthetica. Informatie en Informatiebeleid 11(1), 54–63 (1993)

    Google Scholar 

  38. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Hoboken (1981)

    MATH  Google Scholar 

  39. Secretan, J., et al.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  40. Shimamura, A.P., Palmer, S.E.E.: Aesthetic Science: Connecting Minds, Brains, and Experience. OUP, New York (2012)

    Google Scholar 

  41. Sims, K.: Artificial evolution for computer graphics. In: PACMCGIT, vol. 18, pp. 319–328 (1991)

    Google Scholar 

  42. Sobel, I.: An isotropic \(3 \times 3\) image gradient operator. In: Machine Vision for Three-Dimensional Scenes (1990)

    Google Scholar 

  43. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning (2017). ar**v:1712.06567

  44. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

    Article  Google Scholar 

  45. Taylor, R.P., Micolich, A.P., Jonas, D.: Fractal analysis of Pollock’s drip paintings. Nature 399(6735), 422–422 (1999)

    Article  Google Scholar 

  46. Todd, P.M., Werner, G.M.: Frankensteinian methods for evolutionary music. In: Musical Networks: Parallel Distributed Perception and Performance, pp. 313–340 (1999)

    Google Scholar 

  47. Todd, S., Latham, W.: Evolutionary Art & Computers. Academic Press Inc., Cambridge (1994)

    MATH  Google Scholar 

  48. Tresset, P., Deussen, O.: Artistically skilled embodied agents. In: AISB (2014)

    Google Scholar 

  49. Wilson, D.J.: An experimental investigation of Birkhoff’s aesthetic measure. J. Abnorm. Soc. Psychol. 34(3), 390 (1939)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley van Hoek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Hoek, L., Saunders, R., de Kleijn, R. (2021). Evolving Virtual Embodied Agents Using External Artifact Evaluations. In: Baratchi, M., Cao, L., Kosters, W.A., Lijffijt, J., van Rijn, J.N., Takes, F.W. (eds) Artificial Intelligence and Machine Learning. BNAIC/Benelearn 2020. Communications in Computer and Information Science, vol 1398. Springer, Cham. https://doi.org/10.1007/978-3-030-76640-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76640-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76639-9

  • Online ISBN: 978-3-030-76640-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation