Part of the book series: Operator Theory: Advances and Applications ((LOLS,volume 286))

Abstract

The Segal–Bargmann transform plays an essential role in signal processing, quantum physics, infinite-dimensional analysis, function theory and further topics. The connection to signal processing is the short-time Fourier transform, which can be used to describe the Segal–Bargmann transform. The classical Segal–Bargmann transform maps a square integrable function to a holomorphic function square-integrable with respect to a Gaussian identity. In signal processing terms, a signal from the position space is mapped to the phase space of wave functions, or Fock space, . We extend the classical Segal–Bargmann transform to a space of Clifford algebra-valued functions. We show how the Segal–Bargmann transform is related to the short-time Fourier transform and use this connection to demonstrate that is unitary up to a constant and maps Sommen’s orthonormal Clifford Hermite functions \(\left \{\phi _{l,k,j}\right \}\) to an orthonormal basis of the Segal–Bargmann module . We also lay out that the Segal–Bargmann transform can be expanded to a convergent series with a dictionary of . In other words, we analyse the signal f in one basis and reconstruct it in a basis of the Segal–Bargmann module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.D. Abreu, A. Haimi, G. Koliander, J.L. Romero, Filtering with Wavelets Zeros and Gaussian Analytic Functions (2018). ar**v:1807.03183v2

    Google Scholar 

  2. D. Alpay, F. Colombo, I. Sabadini, G. Salomon, The fock space in the slice hyperholomorphic setting, in Hypercomplex Analysis: New Perspectives and Applications ed. by S. Bernstein, et al. (Springer, Berlin, 2014), pp. 43–59

    Google Scholar 

  3. R. Bardenet, A. Hardy, Time-frequency transforms of white noises and Gaussian analytic functions (2019). ar**v:1807.11554v2

    Google Scholar 

  4. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform Part I. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Google Scholar 

  5. S. Bernstein, J.-L. Bouchot, M. Reinhardt, B. Heise, Generalized analytic signals in image processing: comparison, theory and applications, in Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics ed. by E. Hitzer, S.J. Sangwine (Birkhäuser, Basel, 2013), pp. 221–246

    Google Scholar 

  6. S. Bernstein, B. Heise, M. Reinhardt, S. Häuser, S. Schausberger, D. Stifter, Fourier plane filtering revisited—analogies in optics and mathematics. Sampl. Theory Signal Image Process. 13(3), 231–248 (2014)

    Google Scholar 

  7. F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, in Research Notes in Mathematics, vol. 76 (Pitman Advanced Publication Program, Boston, 1982)

    Google Scholar 

  8. F. Brackx, N. De Schepper, F. Sommen, Clifford-Hermite-Monogenic operators. Czechoslov. Math. J. 56, 1301–1322 (2006)

    Google Scholar 

  9. F. Brackx, N. De Schepper, K.I. Kou, F. Sommen, The Mehler formula for the generalized Clifford-Hermite polynomials. Acta Math. Sin. (Engl. Ser.) 23, 697–704 (2007)

    Google Scholar 

  10. P. Denis, P. Carre, C. Fernandez-Maloigne, Spatial and spectral Quaternionic approaches for Colour images. Comput. Vis. Image Underst. 107, 74–87 (2007)

    Google Scholar 

  11. K. Diki, The Cholewinski-Fock space in the slice hyperholomorphic setting. Math. Meth. Appl. Sci. 42, 2124–2141 (2019)

    Google Scholar 

  12. K. Diki, A. Ghanmi, A Quaternionic analogue of the Segal-Bargmann transform. Compl. Anal. Oper. Theory 11, 457–473 (2016)

    Google Scholar 

  13. T. Ell, S. Sangwine, Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 22–35 (2001)

    Google Scholar 

  14. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49, 3136–3144 (2001)

    Google Scholar 

  15. P. Flandrin, Time-Frequency filtering based on spectrogram zeros. IEEE Signal Process Lett. 22, 03 (2015)

    Google Scholar 

  16. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Physik, 622–647 (1932)

    Google Scholar 

  17. J.E. Gilbert, M.A.M. Murray, Clifford algebras and Dirac operators in harmonic analysis, in Cambridge Studies in Advanced Mathematics, vol. 26 (Cambridge University, Cambridge, 1991)

    Google Scholar 

  18. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)

    Google Scholar 

  19. K. Gürlebeck, K. Habetha, W. Sprößig, Funktionentheorie in der Ebene und im Raum, in Grundstudium Mathematik (Birkhäuser, Basel, 2006)

    Google Scholar 

  20. B. Hall, Holomorphic Methods in Analysis and Mathematical Physics. Contemp. Math. 260, 1–59 (2000)

    Google Scholar 

  21. N. Le Bihan, S.J. Sangwine, Quaternion principal component analysis of color images. IEEE Int. Conf. Image Process. 1, 809–812 (2003)

    Google Scholar 

  22. J. Mourão, J.P. Nunes, T. Qian, Coherent state transforms and the Weyl equation in Clifford analysis. J. Math. Phys. 58(1), 013503 (2017)

    Google Scholar 

  23. D. Peña-Peña, I. Sabadini, F. Sommen, Segal-Bargmann-Fock modules of monogenic functions. J. Math. Phys. 58(10), 103507 (2017)

    Google Scholar 

  24. J. Ryan, Complexified clifford analysis. Complex Variables Theory Appl. Int. J. 1(1), 119–149 (1982)

    Google Scholar 

  25. I.E. Segal, Mathematical problems of relativistic physics, Chap.VI, in Proceedings of the Summer Seminar, Boulder, Colorado, 1960, vol. II, ed. by M. Kac. Lectures in Applied Mathematics, Providence, Rhode Island (American Mathematical Society, New York, 1963)

    Google Scholar 

  26. F. Sommen, Special functions in clifford analysis and axial symmetry. J. Math. Anal. App. 130, 110–133 (1988)

    Google Scholar 

  27. R. Zeng, J. Wu, Z. Shao, Y. Chen, L. Senhadji, H. Shu, Color image classification via quaternion principal component analysis network. Neurocomputing 216, 416-428 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swanhild Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernstein, S., Schufmann, S. (2021). The Segal–Bargmann Transform in Clifford Analysis. In: Alpay, D., Peretz, R., Shoikhet, D., Vajiac, M.B. (eds) New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative. Operator Theory: Advances and Applications(), vol 286. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-76473-9_3

Download citation

Publish with us

Policies and ethics

Navigation