AC Analysis

  • Chapter
  • First Online:
Computational Electronic Circuits
  • 1106 Accesses

Abstract

The AC analysis deals with the small-signal, linear and time-invariant circuits. Nonlinear circuits are first linearized using a method such as Taylor expansion. The circuit transfer functions are then calculated in s-domain from the Admittance matrix using Cramer’s method combined with the Laplace expansion. Important information such as stability, bandwidth, gain, group delay, poles and zeros are obtained from transfer functions. Using a node-elimination algorithm, circuits are simplified to two input and output nodes and the resulting 2-port model is used to extract the power gains, the maximum power, the inductive or the capacitive behavior, the quality factor and the matching characteristics of the circuits using the reduced-order admittance, impedance or scattering parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Questions

Questions

Answer the following questions using materials and codes you have learned in this chapter.

4.1.1 Q.4.1

Eliminate the node 5 of the X-shaped circuit and convert it to the square-shaped circuit. Find the relationship among the components (Fig. 4.109).

Fig. 4.109
figure 109

Circuit of Question 1

Answers:

\( {G}_a=\frac{G_1{G}_2}{G_1+{G}_2+{G}_3+{G}_4} \), \( {G}_b=\frac{G_1{G}_4}{G_1+{G}_2+{G}_3+{G}_4} \), \( {G}_c=\frac{G_2{G}_3}{G_1+{G}_2+{G}_3+{G}_4} \) and \( {G}_d=\frac{G_3{G}_4}{G_1+{G}_2+{G}_3+{G}_{4.}} \)

4.1.2 Q.4.2

Eliminate the node 5 of the X-shaped circuit and convert it to a 4-node circuit. Find the relationship among the components and draw the circuit (Fig. 4.110).

Fig. 4.110
figure 110

Circuit of Question 2

Answers:

The shunt component at the eliminated node of the original circuit appears as modified shunt components at all nodes of the reduced-order circuit (Fig. 4.111).

Fig. 4.111
figure 111

Circuit of Question 2 Answer

\( {G}_a=\frac{G_0}{5} \) and \( {G}_b=\frac{G_0}{5} \)

4.1.3 Q.4.3

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.112).

Fig. 4.112
figure 112

Circuit of Question 3

Answers: See Fig. 4.113.

Fig. 4.113
figure 113

Small-signal AC model of Question 3

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_1+{\mathrm{G}}_2+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gs}1} $$
$$ {\mathrm{Y}}_{\mathrm{b}}=\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gd}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{g}}_{\mathrm{ds}1}+{\mathrm{G}}_{\mathrm{D}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{db}1} $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3)

KCL(3): 0 == gm1*v2 + Yc*v3 + Yb*(v3-v2)

4.1.4 Q.4.4

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.114).

Fig. 4.114
figure 114

Circuit of Question 4

Answers: See Fig. 4.115.

Fig. 4.115
figure 115

Small-Signal AC Model of Question 4

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_2+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gs}1} $$
$$ {\mathrm{Y}}_{\mathrm{b}}={\mathrm{G}}_1+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gd}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{g}}_{\mathrm{ds}1}+{\mathrm{G}}_{\mathrm{D}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{db}1} $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3)

KCL(3): 0 == gm1*v2 + Yc*v3 + Yb*(v3-v2)

4.1.5 Q.4.5

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.116).

Fig. 4.116
figure 116

Circuit of Question 5

Answers: See Fig. 4.117.

Fig. 4.117
figure 117

Small-signal AC model of Question 5

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_1+{\mathrm{G}}_2+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gd}1} $$
$$ {\mathrm{Y}}_{\mathrm{b}}=\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gs}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{g}}_{\mathrm{b}1}+{\mathrm{g}}_{\mathrm{ds}1}+{\mathrm{G}}_{\mathrm{S}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{sb}1} $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3)

KCL(3): 0 == gm1*(v3-v2) + Yc*v3 + Yb*(v3-v2)

4.1.6 Q.4.6

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.118).

Fig. 4.118
figure 118

Circuit of Question 6

Answers: See Fig. 4.119.

Fig. 4.119
figure 119

Small-signal AC model of Question 6

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_{\mathrm{S}}+\mathrm{j}\upomega \left({\mathrm{C}}_{\mathrm{gs}1}+{\mathrm{C}}_{\mathrm{sb}1}\right) $$
$$ {\mathrm{Y}}_{\mathrm{b}}={\mathrm{g}}_{\mathrm{ds}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{G}}_{\mathrm{D}}+\mathrm{j}\upomega \left({\mathrm{C}}_{\mathrm{gd}1}+{\mathrm{C}}_{\mathrm{db}1}\right) $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3) + (gm1 + gb1)*v2

KCL(3): 0 == − (gm1 + gb1)*v2 + Yb*(v3-v2) + Yc*v3

4.1.7 Q.4.7

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.120).

Fig. 4.120
figure 120

Circuit of Question 7

Answers: See Fig. 4.121.

Fig. 4.121
figure 121

Small-signal AC model of Question 7

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_{\mathrm{S}}+\mathrm{j}\upomega \left({\mathrm{C}}_{\mathrm{gs}1}+{\mathrm{C}}_{\mathrm{sb}1}\right) $$
$$ {\mathrm{Y}}_{\mathrm{b}}={\mathrm{g}}_{\mathrm{ds}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{G}}_{\mathrm{D}}+{\mathrm{G}}_1+\mathrm{j}\upomega \left({\mathrm{C}}_{\mathrm{gd}1}+{\mathrm{C}}_{\mathrm{db}1}\right) $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3) + (gm1 + gb1)*v2

KCL(3): 0 == − (gm1 + gb1)*v2 + Yb*(v3-v2) + Yc*v3

4.1.8 Q.4.8

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.122).

Fig. 4.122
figure 122

Circuit of Question 8

Answers: See Fig. 4.123.

Fig. 4.123
figure 123

Small-signal AC Model of Question 8

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_1+{\mathrm{G}}_2 $$
$$ {\mathrm{Y}}_{\mathrm{b}}=\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gs}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{G}}_{\mathrm{S}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{sb}1} $$
$$ {\mathrm{Y}}_{\mathrm{d}}={\mathrm{g}}_{\mathrm{d}\mathrm{s}1} $$
$$ {\mathrm{Y}}_{\mathrm{e}}={\mathrm{G}}_{\mathrm{D}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{db}1} $$
$$ {\mathrm{Y}}_{\mathrm{f}}=\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gd}1} $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3) + Yf*(v2-v4)

KCL(3): 0 == gm1*(v3-v2) + gb1*v3 + Yb*(v3-v2) + Yc*v3 + Yd*(v3-v4)

KCL(4): 0 == gm1*(v2-v3)-gb1*v3 + Yd*(v4-v3) + Ye*v4 + Yf*(v4-v2)

4.1.9 Q.4.9

Create the small-signal AC model of the following circuit and find the admittance matrix using KCL equations (Fig. 4.124).

Fig. 4.124
figure 124

Circuit of Question 9

Answers: See Fig. 4.125.

Fig. 4.125
figure 125

Small-signal AC model of Question 9

$$ {\mathrm{Y}}_{\mathrm{a}}={\mathrm{G}}_2 $$
$$ {\mathrm{Y}}_{\mathrm{b}}=\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gs}1} $$
$$ {\mathrm{Y}}_{\mathrm{c}}={\mathrm{G}}_{\mathrm{S}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{sb}1} $$
$$ {\mathrm{Y}}_{\mathrm{d}}={\mathrm{g}}_{\mathrm{d}\mathrm{s}1} $$
$$ {\mathrm{Y}}_{\mathrm{e}}={\mathrm{G}}_{\mathrm{D}}+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{db}1} $$
$$ {\mathrm{Y}}_{\mathrm{f}}={\mathrm{G}}_1+\mathrm{j}\upomega {\mathrm{C}}_{\mathrm{gd}1} $$

KCL(1): i1 == g*(v1-v2)

KCL(2): 0 == g*(v2-v1) + Ya*v2 + Yb*(v2-v3) + Yf*(v2-v4)

KCL(3): 0 == gm1*(v3-v2) + gb1*v3 + Yb*(v3-v2) + Yc*v3 + Yd*(v3-v4)

KCL(4): 0 == gm1*(v2-v3)-gb1*v3 + Yd*(v4-v3) + Ye*v4 + Yf*(v4-v2)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamedi-Hagh, S. (2022). AC Analysis. In: Computational Electronic Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-75568-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75568-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75567-6

  • Online ISBN: 978-3-030-75568-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation