Pythagorean Fuzzy c-means Clustering Algorithm

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2021)

Abstract

This article presents algorithm for \(c\)-means clustering under Pythagorean fuzzy environment. In this method Pythagorean fuzzy generator is developed to convert the data points from crisp to Pythagorean fuzzy numbers (PFNs). Subsequently, Euclidean distance is used to measure the distances between data points. From the viewpoint of capturing imprecise information, the proposed method is advantageous in the sense that associated PFNs not only consider membership and non-membership degrees, but also includes several other variants of fuzzy sets for information processing. The proposed algorithm is applied on synthetic, UCI and two moon datasets to verify the validity and efficiency of the developed method. Comparing the results with the fuzzy and intuitionistic fuzzy \(c\)-means clustering algorithms, the proposed method establishes its higher capability of partitioning data using Pythagorean fuzzy information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderberg, M.R.: Cluster Analysis for Applications, 1st edn. Academic Press, New York (1972)

    MATH  Google Scholar 

  2. Mangiameli, P., Chen, S.K., West, D.: A comparison of SOM neural network and hierarchical clustering methods. Eur. J. Oper. Res. 93(2), 402–417 (1996)

    Article  Google Scholar 

  3. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 5th edn. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  5. Beliakov, G., King, M.: Density based fuzzy C-means clustering of non-convex patterns. Eur. J. Oper. Res. 173(3), 717–728 (2006)

    Article  MathSciNet  Google Scholar 

  6. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, New York (1994)

    MATH  Google Scholar 

  7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  Google Scholar 

  8. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  9. Forgey, E.: Cluster analysis of multivariate data: efficiency vs Interpretability of Classification. Biometrics 21, 768–769 (1965)

    Google Scholar 

  10. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  11. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)

    Book  Google Scholar 

  12. Xu, Z., Wu, J.: Intuitionistic fuzzy c-mean clustering algorithms . J. Syst. Eng. Electron. 21(4), 580–590 (2010)

    Article  MathSciNet  Google Scholar 

  13. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MathSciNet  Google Scholar 

  14. Chaira, T.: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl. Soft Comput. 11(2), 1711–1717 (2011)

    Article  Google Scholar 

  15. Kumar, S.A., Harish, B.S.: A Modified intuitionistic fuzzy clustering algorithm for medical image segmentation. J. Intell. Syst. 27(4), 1–15 (2017)

    Google Scholar 

  16. Wu, C., Zhang, X.: Total Bregman divergence-based fuzzy local information C-means clustering for robust image segmentation. Appl. Soft Comput. 94, 1–31 (2020)

    Google Scholar 

  17. Zeng, S., Wang, Z., Huang, R., Chen, L., Feng, D.: A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes. Neurocomputing 335, 59–71 (2019)

    Article  Google Scholar 

  18. Verman, H., Gupta, A., Kumar, D.: A modified intuitionistic fuzzy c-mean algorithm incorporating hesitation degree. Pattern Recognit. Lett. 122, 45–52 (2019)

    Article  Google Scholar 

  19. Lohani, Q.M.D., Solanki, R., Muhuri, P.K.: A Convergence theorem and an experimental study of intuitionistic fuzzy C-mean algorithm over machine learning dataset. Appl. Soft Comput. 71, 1176–1188 (2018)

    Article  Google Scholar 

  20. Bustince, H., Kacprzyk, J., Mohedano, V.: Intuitionistic fuzzy generators: application to intuitionistic fuzzy complementation. Fuzzy Sets Syst. 114(3), 485–504 (2000)

    Article  MathSciNet  Google Scholar 

  21. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28, 436–452 (2013)

    Article  Google Scholar 

  22. Dave, R.N.: Validating fuzzy partition obtained through c-shells clustering. Pattern Recognit. Lett. 17(6), 613–623 (1996)

    Article  MathSciNet  Google Scholar 

  23. **e, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  24. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  25. Li, D., Zeng, W.: Distance measure of pythagorean fuzzy sets. Int. J. Intell. Syst. 33, 338–361 (2017)

    Google Scholar 

  26. Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. Advances in Design and Control, Philadelphia (2008)

    Google Scholar 

  27. Higashi, M., Klir, G.J.: On measures of fuzzyness and fuzzy complements. Int. J. Gen. Syst. 8(3), 169–180 (1982)

    Article  Google Scholar 

  28. Wu, K.-L.: An analysis of robustness of partition coefficient index. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, pp. 372–376 (2008)

    Google Scholar 

Download references

Acknowledgments

One author, Souvik Gayen, is grateful to UGC, Govt. of India, for providing financial support to execute the research work vide UGC Reference No. 1184/(SC). The suggestions and comments on the reviewers on this article are thankfully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gayen, S., Biswas, A. (2021). Pythagorean Fuzzy c-means Clustering Algorithm. In: Dutta, P., Mandal, J.K., Mukhopadhyay, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2021. Communications in Computer and Information Science, vol 1406. Springer, Cham. https://doi.org/10.1007/978-3-030-75529-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75529-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75528-7

  • Online ISBN: 978-3-030-75529-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation