HIV and TB

  • Chapter
  • First Online:
Tuberculosis in Clinical Practice

Abstract

HIV and tuberculosis (TB) co-infection remains a major global healthcare challenge. HIV is the strongest single risk factor for the development of TB disease—which itself is the leading cause of death in people living with HIV. Mycobacterium tuberculosis and HIV act synergistically to accelerate immune dysfunction and decline. HIV alters the clinical presentation of TB, particularly in advanced states of immunocompromise. The immune reconstitution disease associated with antiretroviral therapy can lead to dramatic clinical deterioration in people on treatment for TB, and also unmask subclinical TB disease. New diagnostic and management strategies are needed to address these complex issues. Central to this is the prompt diagnosis and treatment of both TB and HIV through integrated services that meet the needs of both people living with HIV (PLWHIV) and TB at-risk communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harries AD, Maher D, Graham S, et al. TB/HIV: a clinical manual. 2nd ed. Geneva: World Health Organization; 2004.

    Google Scholar 

  2. UNAIDS. 2019 Global HIV Statistics. 2019. Available from: http://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf. Accessed 01 May 2019.

  3. World Health Organization. Global tuberculosis report 2018. World Health Organization; 2018.

    Google Scholar 

  4. Amelio P, Portevin D, Hella J, et al. HIV infection functionally impairs Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses. J Virol. 2019;93(5):e01728–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garrait V, Cadranel J, Esvant H, et al. Tuberculosis generates a microenvironment enhancing the productive infection of local lymphocytes by HIV. J Immunol. 1997;159:2824–30.

    CAS  PubMed  Google Scholar 

  6. Badri M, Wilson D, Wood R. Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet. 2002;359:2059–64.

    Article  PubMed  Google Scholar 

  7. Public Health England. Tuberculosis in England: 2018. London: Public Health England; 2018.

    Google Scholar 

  8. Aaron L, Saadoun D, Calatroni I, et al. Tuberculosis in HIV-infected patients: a comprehensive review. Clin Microbiol Infect. 2004;10(5):388–98.

    Article  CAS  PubMed  Google Scholar 

  9. Lawn SD, Badri M, Wood R. Tuberculosis among HIV-infected patients receiving HAART: long term incidence and risk factors in a South African cohort. AIDS. 2005;19(18):2109–16.

    Article  PubMed  Google Scholar 

  10. Girardi E, Antonucci G, Vanacore P, et al. Impact of combination antiretroviral therapy on the risk of tuberculosis among persons with HIV infection. AIDS. 2000;4(13):1985–91.

    Article  Google Scholar 

  11. Bassett IV, Wang B, Chetty S, et al. Intensive tuberculosis screening for HIV-infected patients starting antiretroviral therapy in durban, South Africa. Clin Infect Dis. 2010;51(7):823–9.

    Article  PubMed  Google Scholar 

  12. Oni T, Burke R, Tsekela R, et al. High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening. Thorax. 2011;66(8):669–73.

    Article  PubMed  Google Scholar 

  13. Badie BM, Mostaan M, Izadi M, et al. Comparing radiological features of pulmonary tuberculosis with and without HIV infection. J AIDS. 2012;3:188.

    Google Scholar 

  14. Daley CL. The typically ‘atypical’ radiographic presentation of tuberculosis in advanced HIV disease. Tubercle & Lung Dis. 1995;76:518–21.

    Article  Google Scholar 

  15. Bracchi M, van Halsema C, Post F et al. British HIV association guidelines for the management of tuberculosis in adults living with HIV 2018. British HIV Association. 2018. www.bhiva.org

  16. Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet. 2011;377(9776):1495–505.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Steingart KR, Schiller I, Horne DJ et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2014.

    Google Scholar 

  18. Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18:76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pankhurst LJ, Del Ojo EC, Votintseva AA, et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med. 2016;4:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerkhoff AD, Barr DA, Schutz C, et al. Disseminated tuberculosis among hospitalised HIV patients in South Africa: a common condition that can be rapidly diagnosed using urine-based assays. Sci Rep. 2017;7(1):10931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Oramasionwu GE, Heilig CM, Udomsantisuk N, et al. The utility of stool cultures for diagnosing tuberculosis in people living with the human immunodeficiency virus. Int J Tuberc Lung Dis.

    Google Scholar 

  22. Heyderman RS, Makunike R, Muza T, et al. Pleural tuberculosis in Harare, Zimbabwe: the relationship between human immunodeficiency virus, CD4 lymphocyte count, granuloma formation and disseminated disease. Tropical Med Int Health. 1998;3:14–20.

    Article  CAS  Google Scholar 

  23. Diacon AH, Van de Wal BW, Wyser C, et al. Diagnostic tools in tuberculous pleurisy: a direct comparative study. Eur Respir J. 2003;22:589–91.

    Article  CAS  PubMed  Google Scholar 

  24. Thwaites GE, van Toorn R, Schoeman J. Tuberculous meningitis: more questions, still too few answers. Lancet Neurol. 2013;12:999–1010.

    Article  CAS  PubMed  Google Scholar 

  25. Vinnard C, Macgregor RR. Tuberculous meningitis in HIV-infected individuals. Curr HIV/AIDS Rep. 2009;6(3):139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garg RK, Malhotra HS, Jain A. Neuroimaging in tuberculous meningitis. Neurol India. 2016;64:219–27.

    Article  PubMed  Google Scholar 

  27. Mathuram AJ, Michael JS, Turaka VP, et al. Mycobacterial blood culture as the only means of diagnosis of disseminated tuberculosis in advanced HIV infection. Trop Dr. 2018;48:100–2.

    Google Scholar 

  28. Lewis DK, Peters R, Schijffelen MJ, et al. Clinical indicators of mycobacteraemia in adults admitted to hospital in Blantyre. Malawi Med J. 2003;15(2):56–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta-Wright A, Corbett EL, van Oosterhout JJ, , et al. Rapid urine-based screening for tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet 2018; 392:292–301.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fee MJ, Oo MM, Gabayan AE, et al. Abdominal tuberculosis in patients infected with the human immunodeficiency virus. Clin Infect Dis. 1995 Apr;20(4):938–44.

    Article  CAS  PubMed  Google Scholar 

  31. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. World Health Organization; 2016.

    Google Scholar 

  32. Abdool Karim SS, Naidoo K, Grobler A, et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naidoo K, Baxter C, Abdool Karim SS. When to start antiretroviral therapy during tuberculosis treatment? Curr Opin Infect Dis. 2013;26(1):35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agent. 2009;33(4):307–20.

    Article  CAS  Google Scholar 

  35. Kuritzkes DR. HIV-1 entry inhibitors: an overview. Curr Opin HIV AIDS. 2009;4(2):82–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. World Health Organization. WHO treatment guidelines for drug-susceptible tuberculosis and patient care: 2017 update. Geneva: World Health Organization; 2017.

    Google Scholar 

  37. Davies G, Cerri S, Richeldi L. Rifabutin for treating pulmonary tuberculosis. Cochrane Database Syst Rev 2007;(4).

    Google Scholar 

  38. Atwine D, Bonnet M, Taburet AM. Pharmacokinetics of efavirenz in patients on antituberculosis treatment in high human immunodeficiency virus and tuberculosis burden countries: a systematic review. Br J Clin Pharmacol. 2018;84:1641–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawn SD, Wilkinson RJ. Immune reconstitution disease associated with parasitic infections following antiretroviral treatment. Parasite Immunol. 2006;28(11):625–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meintjes G, Lawn SD, Scano F, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lawn SD, Myer L, Bekker LG, Wood R. Tuberculosis-associated immune reconstitution disease: incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS. 2007;21(3):335–41.

    Article  PubMed  Google Scholar 

  42. Bourgarit A, Carcelain G. Martinez, et al. Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS. 2006;20(2):F1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Walker NF, Wilkinson KA, Meintjes G, et al. Matrix degradation in human immunodeficiency virus type 1-associated tuberculosis and tuberculosis immune reconstitution inflammatory syndrome: a prospective observational study. Clin Infect Dis. 2017;65(1):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Musselwhite LW, Andrade BB, Ellenberg SS, et al. Vitamin D, D-dimer, interferon γ, and sCD14 levels are independently associated with immune reconstitution inflammatory syndrome: a prospective, international study. EBio Medicine. 2016;4:115–23.

    Google Scholar 

  45. Haddow L, Moosa MY, Easterbrook PJ. Validation of a published case definition for tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS. 2010;24(1):103–8.

    Article  PubMed  Google Scholar 

  46. Bell L, Breen R, Miller R, et al. Paradoxical reactions and immune reconstitution inflammatory syndrome in tuberculosis. Int J Infect Dis. 2015;32:39–45.

    Article  CAS  PubMed  Google Scholar 

  47. Breen R, Smith C, Bettinson H, et al. Paradoxical reactions during tuberculosis treatment in patients with and without HIV coinfection. Thorax. 2004;59:704–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marais S, Meintjes G, Pepper DJ, et al. Frequency, severity, and prediction of tuberculous meningitis immune reconstitution inflammatory syndrome. Clin Infect Dis. 2012;56(3):450–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Pepper DJ, Marais S, Maartens G, et al. Neurologic manifestations of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome: a case series. Clin Infect Dis. 2009;48(11):e96–107.

    Article  PubMed  Google Scholar 

  50. Namale PE, Abdullahi LH, Fine S, et al. Paradoxical TB-IRIS in HIV-infected adults: a systematic review and meta-analysis. Future Microbiol. 2015;10:1077–99.

    Article  CAS  PubMed  Google Scholar 

  51. Meintjes G, Stek C, Blumenthal F, et al. Prednisone for the prevention of paradoxical tuberculosis-associated IRIS. N Engl J Med. 2018;379:1915–25.

    Article  CAS  PubMed  Google Scholar 

  52. Getahun H, Matteelli A, Abubakar I, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46:1563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sterling TR, Scott NA, Miro JM, et al. Three months of weekly rifapentine and isoniazid for treatment of Mycobacterium tuberculosis infection in HIV-coinfected persons. AIDS. 2016;30(10):1607–15.

    Article  CAS  PubMed  Google Scholar 

  54. Swindells S, Ramchandani R, Gupta A, et al. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med. 2019;380:1001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mesfin YM, Hailemariam D, Biadgilign S, et al. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis. PLoS One. 2014;9(1):e82235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva, Switzerland: World Health Organization; 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morrison, H., Cropley, I., Lipman, M. (2021). HIV and TB. In: Kon, O.M. (eds) Tuberculosis in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-75509-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75509-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75508-9

  • Online ISBN: 978-3-030-75509-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation