Regularized Estimation of Covariance Structure Through Quadratic Loss Function

  • Chapter
  • First Online:
Multivariate, Multilinear and Mixed Linear Models

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 1104 Accesses

Abstract

Estimation of high-dimensional covariance structure is an interesting topic in statistics. Motivated by the work of Lin et al. [9], in this paper, the quadratic loss function is proposed to measure the discrepancy between a real covariance matrix and its candidate covariance matrix, where the latter has a regular structure. A commonly encountered candidate structures including MA(1), compound symmetry, AR(1), and banded Toeplitz matrix are considered. Regularization is made by selecting the optimal structure from a potential class of candidate covariance structures through minimizing the discrepancy, i.e., the quadratic loss function, between the given matrix and the candidate covariance class. Analytical or numerical solutions to the optimization problems are obtained and simulation studies are also conducted, showing that the proposed approach provides a reliable method to regularize covariance structures. It is applied to analyze real data problems for illustration of the use of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., Pan, J.: Covariance structure regularization via Frobenius-norm discrepancy. Linear Algebra Appl. 510, 124–145 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ellis, G.H., Watson, L.T.: A parallel algorithm for simple roots for polynomials. Comput. Math. Appl. 10, 107–121 (1984)

    Article  MathSciNet  Google Scholar 

  3. Filipiak, K., Markiewicz, A., Mieldzioc, A., Sawikowska, A.: On projection of a positive definite matrix on a cone of nonnegative definite Toeplitz matrices. Electron. J. Linear Algebra 33, 74–82 (2018)

    Article  MathSciNet  Google Scholar 

  4. Haff, L.R.: Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Stat. 8(3), 586–597 (1980)

    Article  MathSciNet  Google Scholar 

  5. Huang, C., Farewell, D., Pan, J.: A calibration method for non-positive definite covariance matrix in multivariate data analysis. J. Multivar. Anal. 157, 45–52 (2017)

    Article  MathSciNet  Google Scholar 

  6. James, W., Stein, C.: Estimation with quadratic loss. In: Neyman, J. (ed.) Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379. University of California Press, Berkeley (1961)

    Google Scholar 

  7. Kenward, M.: A method for comparing profiles of repeated measurements. Appl. Stat. 36, 296–308 (1987)

    Article  MathSciNet  Google Scholar 

  8. Lin, F., Jovanović, M.R.: Least-squares approximation of structured covariances. IEEE Trans. Autom. Control 54(7), 1643–1648 (2009)

    Article  MathSciNet  Google Scholar 

  9. Lin, L., Higham, N.J., Pan, J.: Covariance structure regularization via entropy loss function. Comput. Stat. Data Anal. 72(4), 315–327 (2014)

    Article  MathSciNet  Google Scholar 

  10. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Google Scholar 

  11. Ning, L., Jiang, X, Georgiou, T.: Geometric methods for structured covariance estimation. In: American Control Conference, pp. 1877–1882. IEEE (2012)

    Google Scholar 

  12. Olkin, I., Selliah, J.B.: Estimating covariance matrix in a multivariate normal distribution. In: Gupta, S.S., Moore, D.S (eds.) Statistical Decision Theory and Related Topics, vol. II, pp. 313–326. Academic Press, New York (1977)

    Google Scholar 

  13. Pan, J., Mackenzie, G.: On modelling mean-covariance structures in longitudinal studies. Biometrika 90(1), 239–244 (2003)

    Article  MathSciNet  Google Scholar 

  14. Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3), 677–690 (1999)

    Article  MathSciNet  Google Scholar 

  15. Potthoff, R.F., Roy, S.N.: A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–326 (1964)

    Article  MathSciNet  Google Scholar 

  16. Ye, H., Pan, J.: Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika 93(4), 927–941 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor and one anonymous reviewer for their helpful comments and suggestions, which leads to substantial improvements to the paper. This work is partially supported by the Natural Science Foundations of China (11761028), the Reserve Talents Foundation of Yunnan Province (No.2015HB061), and the Reserve Talents Foundations of Honghe University (2014HB0204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Pan .

Editor information

Editors and Affiliations

Appendix

Appendix

We need the following lemma to judge the determinant sign of a matrix.

Lemma 4.1

If \(\mathbf {A}\) and \(\mathbf {B}\) are positive semidefinite matrices of the same order, then

$$ 0\le {\text {Tr}}(\mathbf {AB})\le {\text {Tr}}(\mathbf {A})\cdot {\text {Tr}}(\mathbf {B}), $$

and

$$ {\text {Tr}}(\mathbf {AB})\le ({\text {Tr}}(\mathbf {A}^2))^\frac{1}{2}\cdot ({\text {Tr}}(\mathbf {B}^2))^\frac{1}{2}. $$

A1. The proof of \(\mathrm{det}(\nabla ^2 L(c,\sigma ))>0\) for MA(1) case.

We first note the first order partial derivative for \(L(c,\sigma )\) is

$$ \begin{array}{rcl} \nabla L(c,\sigma ) &{} := &{} \left( \begin{array}{c} \frac{\partial L}{\partial c} \\ \frac{\partial L}{\partial \sigma } \end{array}\right) \\ &{} \phantom {:}= &{} \left( \begin{array}{c} 2\sigma ^4x+2c\sigma ^4y-2\sigma ^2z \\ 4\sigma ^3{\text {Tr}}({\pmb {\Sigma }}^{-2})+8c\sigma ^3x+4\sigma ^3c^2y-4\sigma {\text {Tr}}({\pmb {\Sigma }}^{-1})-4c\sigma z \end{array}\right) . \end{array} $$

Then the Hessian matrix is

$$ \begin{array}{l} \nabla ^2\,L(c,\sigma ) = \\ \ \left( \begin{array}{cc} 2\sigma ^4y &{} \quad 8\sigma ^3x+8c\sigma ^3y-4\sigma z \\ 8\sigma ^3x+8c\sigma ^3y-4\sigma z &{} \quad 12\sigma ^2 {\text {Tr}}({\pmb {\Sigma }}^{-2})+24c\sigma ^2x+12\sigma ^2c^2y-4{\text {Tr}}({\pmb {\Sigma }}^{-1})-4cz \end{array} \right) \\ \ = \\ \ \left( \begin{array}{cc} 2\sigma ^4y &{} \quad 4\sigma ^3x+4c\sigma ^3y \\ 4\sigma ^3x+4c\sigma ^3y &{} \quad 8\sigma ^2 {\text {Tr}}({\pmb {\Sigma }}^{-2})+16c\sigma ^2x+8\sigma ^2c^2y \end{array}\right) , \end{array} $$

where \(x={\text {Tr}}({\pmb {\Sigma }}^{-2}{} \mathbf{T} _1)\), \(y={\text {Tr}}({\pmb {\Sigma }}^{-2}{} \mathbf{T} _1^2)\), \(z={\text {Tr}}({\pmb {\Sigma }}^{-1}{} \mathbf{T} _1)\). Thus

$$ \begin{array}{rcl} \mathrm{det}(\nabla ^2\,L(c,\sigma )) &{} = &{} 16\sigma ^6(y{\text {Tr}}({\pmb {\Sigma }}^{-2})-x^2) \\ &{} = &{} 16\sigma ^6({\text {Tr}}({\pmb {\Sigma }}^{-2}{} \mathbf{T} _1^2)\cdot {\text {Tr}}({\pmb {\Sigma }}^{-2})-({\text {Tr}}({\pmb {\Sigma }}^{-2}{} \mathbf{T} _1))^2). \end{array} $$

According to Lemma 4.1, we have \(\mathrm{det}(\nabla ^2 L(c,\sigma ))>0\).

A2. The proof of \(\mathrm{det}(\nabla ^2 L(c,\sigma ))>0\) for CS case.

Since

$$ \begin{array}{l} \nabla ^2\,L(c,\sigma ) = \\ \ \left( \begin{array}{cc} 2\sigma ^4v &{} \quad 8\sigma ^3w+8c\sigma ^3v-4\sigma u \\ 8\sigma ^3w+8c\sigma ^3v-4\sigma u &{} \quad 12\sigma ^2 {\text {Tr}}({\pmb {\Sigma }}^{-2})+24c\sigma ^2w+12\sigma ^2c^2v-4{\text {Tr}}({\pmb {\Sigma }}^{-1})-4cu \end{array}\right) \\ \ = \left( \begin{array}{cc} 2\sigma ^4v &{} \quad 4\sigma ^3w+4c\sigma ^3v \\ 4\sigma ^3w+4c\sigma ^3v &{} \quad 8\sigma ^2 {\text {Tr}}({\pmb {\Sigma }}^{-2})+16c\sigma ^2w+8\sigma ^2c^2v \end{array}\right) , \end{array} $$

where \(u={\text {Tr}}({\pmb {\Sigma }}^{-1}(\mathbf{J} _m-\mathbf{I} _m))\), \(v={\text {Tr}}({\pmb {\Sigma }}^{-2}(\mathbf{J} _m-\mathbf{I} _m)^2)\), \(w={\text {Tr}}({\pmb {\Sigma }}^{-2}(\mathbf{J} _m-\mathbf{I} _m))\). Then, following Lemma 4.1, we have

$$ \begin{array}{rcl} \mathrm{det}(\nabla ^2\,L(c,\sigma )) &{} = &{} 16\sigma ^6(v {\text {Tr}}({\pmb {\Sigma }}^{-2})-w^2)\\ &{} = &{} 16\sigma ^6\left[ {\text {Tr}}({\pmb {\Sigma }}^{-2}(\mathbf{J} _m-\mathbf{I} _m)^2)\cdot {\text {Tr}}({\pmb {\Sigma }}^{-2})-({\text {Tr}}({\pmb {\Sigma }}^{-2}(\mathbf{J} _m-\mathbf{I} _m)))^2\right] >0. \end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Cui, X., Li, C., Zhao, J., Zeng, L., Pan, J. (2021). Regularized Estimation of Covariance Structure Through Quadratic Loss Function. In: Filipiak, K., Markiewicz, A., von Rosen, D. (eds) Multivariate, Multilinear and Mixed Linear Models. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-75494-5_4

Download citation

Publish with us

Policies and ethics

Navigation