Exploring the Gap Between Treedepth and Vertex Cover Through Vertex Integrity

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Abstract

For intractable problems on graphs of bounded treewidth, two graph parameters treedepth and vertex cover number have been used to obtain fine-grained complexity results. Although the studies in this direction are successful, we still need a systematic way for further investigations because the graphs of bounded vertex cover number form a rather small subclass of the graphs of bounded treedepth. To fill this gap, we use vertex integrity, which is placed between the two parameters mentioned above. For several graph problems, we generalize fixed-parameter tractability results parameterized by vertex cover number to the ones parameterized by vertex integrity. We also show some finer complexity contrasts by showing hardness with respect to vertex integrity or treedepth.

Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169, JP19K21537, JP20K19742, JP20H05793.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For example, by fixing the ordering of vertices in S as \(v_{1}, \dots , v_{|S|}\), we can set t to be the adjacency matrix of \(G[S \cup V(C)]\) such that the ith row and column correspond to \(v_{i}\) for \(1 \le i \le |S|\) and under this condition the string \(t[1,1], \dots , t[1, s], t[2,1], \dots , t[s,s]\) is lexicographically minimal, where \(s = |S \cup V(C)|\).

  2. 2.

    In [40], W[1]-hardness was stated for \(\mathsf {tw}\) but the proof shows it for \(\mathsf {td}\) as well.

References

  1. Abu-Khzam, F.N.: Maximum common induced subgraph parameterized by vertex cover. Inf. Process. Lett. 114(3), 99–103 (2014). https://doi.org/10.1016/j.ipl.2013.11.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., Miyano, E., Ono, H.: Graph classes and the complexity of the graph orientation minimizing the maximum weighted outdegree. Discret. Appl. Math. 159(7), 498–508 (2011). https://doi.org/10.1016/j.dam.2010.11.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Assmann, S.F., Peck, G.W., Sysło, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1 and 2. SIAM J. Algebraic Discrete Methods 2(4), 387–393 (1981). https://doi.org/10.1137/0602041

    Article  MathSciNet  MATH  Google Scholar 

  5. Barefoot, C.A., Entringer, R.C., Swart, H.C.: Vulnerability in graphs – a comparative survey. J. Combin. Math. Combin. Comput. 1, 13–22 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017). https://doi.org/10.1137/16M1057383

    Article  MathSciNet  MATH  Google Scholar 

  7. Rémy, B., Hanaka, T., Katsikarelis, I., Kim, E.J., Lampis, M.: New results on directed edge dominating set. In: MFCS 2018, volume 117 of LIPIcs, pp. 67:1–67:16 (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.67

  8. Rémy, B., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y.: Grundy distinguishes treewidth from pathwidth. In: ESA 2020, volume 173 of LIPIcs, pp. 14:1–14:19 (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.14

  9. Biedl, T.C., Chan, T.M., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discret. Appl. Math. 148(1), 27–48 (2005). https://doi.org/10.1016/j.dam.2004.12.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6_110

    Chapter  Google Scholar 

  11. Bodlaender, H.L., Hanaka, T., Jaffke, L., Ono, H., Otachi, Y., van der Zanden, T.C.: Hedonic seat arrangement problems (extended abstract). In: AAMAS 2020, pp. 1777–1779 (2020) https://doi.org/10.5555/3398761.3398979

  12. Bodlaender, H.L., Hanaka, T., Okamoto, Y., Otachi, Y., van der Zanden, T.C.: SubGraph isomorphism on graph classes that exclude a substructure. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 87–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_8

    Chapter  Google Scholar 

  13. Bonnet, É., Purohit, N.: Metric dimension parameterized by treewidth. In: IPEC 2019, volume 148 of LIPIcs, pp. 5:1–5:15 (2019). https://doi.org/10.4230/LIPIcs.IPEC.2019.5

  14. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure of the input graph. Discret. Appl. Math. 231, 78–94 (2017). https://doi.org/10.1016/j.dam.2016.11.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. RAIRO Theor. Inform. Appl. 26, 257–286 (1992). https://doi.org/10.1051/ita/1992260302571

    Article  MathSciNet  MATH  Google Scholar 

  16. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  17. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_9

    Chapter  MATH  Google Scholar 

  18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Cham (1999). https://doi.org/10.1007/978-1-4612-0515-9

  19. Drange, P.G., Dregi, M.S., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4), 1181–1202 (2016). https://doi.org/10.1007/s00453-016-0127-x

  20. Dvořák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. In: IJCAI 2017, pp. 607–613 (2017). https://doi.org/10.24963/ijcai.2017/85

  21. Dvořák, P., Knop, D.: Parameterized complexity of length-bounded cuts and multicuts. Algorithmica 80(12), 3597–3617 (2018). https://doi.org/10.1007/s00453-018-0408-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Enciso, R., Fellows, M.R., Guo, J., Kanj, I., Rosamond, F., Suchý, O.: What makes equitable connected partition easy. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 122–133. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_10

    Chapter  Google Scholar 

  23. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011). https://doi.org/10.1016/j.ic.2010.11.026

    Article  MathSciNet  MATH  Google Scholar 

  24. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

    Chapter  Google Scholar 

  25. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523 (2011). https://doi.org/10.1016/j.tcs.2010.10.043

    Article  MathSciNet  MATH  Google Scholar 

  26. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica (2020). https://doi.org/10.1007/s00453-020-00758-8

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, W. H (1979)

    Google Scholar 

  28. Gassner, E.: The steiner forest problem revisited. J. Discrete Algorithms 8(2), 154–163 (2010). https://doi.org/10.1016/j.jda.2009.05.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. CoRR, abs/2101.09414, ar**v preprint ar**v:2101.09414 (2021)

  30. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013). https://doi.org/10.1016/j.jcss.2012.04.004

    Article  MathSciNet  MATH  Google Scholar 

  31. Kellerhals, L., Koana, T.: Parameterized complexity of geodetic set. In: IPEC 2020, volume 180 of LIPIcs, pp. 20:1–20:14 (2020). https://doi.org/10.4230/LIPIcs.IPEC.2020.20

  32. Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

  33. Lokshtanov, D.: Parameterized integer quadratic programming: variables and coefficients. CoRR, abs/1511.00310 (2015). ar**v preprint ar**v:1511.00310

  34. Lokshtanov, D., Misra, N., Saurabh, S.: Imbalance is fixed parameter tractable. Inf. Process. Lett. 113(19–21), 714–718 (2013). https://doi.org/10.1016/j.ipl.2013.06.010

    Article  MathSciNet  MATH  Google Scholar 

  35. Meeks, K., Alexander, S.: The parameterised complexity of list problems on graphs of bounded treewidth. Inf. Comput. 251, 91–103 (2016). https://doi.org/10.1016/j.ic.2016.08.001

    Article  MathSciNet  MATH  Google Scholar 

  36. Misra, N., Mittal, H.: Imbalance parameterized by twin cover revisited. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol. 12273, pp. 162–173. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58150-3_13

    Chapter  Google Scholar 

  37. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7(4), 505–512 (1986). https://doi.org/10.1137/0607057

    Article  MathSciNet  MATH  Google Scholar 

  38. Muradian, D.: The bandwidth minimization problem for cyclic caterpillars with hair length 1 is NP-complete. Theor. Comput. Sci. 307(3), 567–572 (2003). https://doi.org/10.1016/S0304-3975(03)00238-X

    Article  MathSciNet  MATH  Google Scholar 

  39. Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Algorithms and Combinatorics. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-27875-4

  40. Szeider, S.: Not so easy problems for tree decomposable graphs. Ramanujan Mathematical Society, Lecture Notes Series, No. 13, pp. 179–190 (2010) ar**v preprint ar**v:1107.1177

  41. Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. ACM Trans. Comput. Log. 12(2), 12:1–12:21 (2011). https://doi.org/10.1145/1877714.1877718

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yota Otachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y. (2021). Exploring the Gap Between Treedepth and Vertex Cover Through Vertex Integrity. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation