Successful Cultivation and Utilization of Aronia melanocarpa (Michx.) Elliott (Black Chokeberry), a Species of North-American Origin, in Poland and the Biosynthetic Potential of Cells from In Vitro Cultures

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

Abstract

Aronia melanocarpa is a medicinal, culinary, and ornamental plant known for many years in the Central, Eastern, and Southern European countries, in Scandinavia and Russia, but is native to North America. At the end of the eighteenth century, it was introduced to Europe and Asia where it has become naturalized and successfully cultivated on an increasingly large scale. This species is a source of the raw material, i.e., fruits rich in antioxidants, most of all anthocyanins, procyanidins, phenolic acids, catechins and flavonoids, as well vitamins and bioelements. This article reviews basic information on the morphology, ecology, and distribution of A. melanocarpa in natural habitats. The requirements for cultivation of this species are also characterized. Much attention has been paid to the chemical composition of the fruits and their consequent therapeutic, health-promoting, culinary and cosmetic applications as confirmed by scientific studies. The current state of the art in biotechnological studies of this species is described, with a special focus on the investigations of the biosynthetic potential of cells cultured in vitro. The study aimed to establish the most beneficial culture conditions for the accumulation of phenolic acids, which are well-known strong antioxidants showing also many other important directions of biological activity. The optimization of culture conditions comprised testing the basal media, concentrations of plant growth regulators, supplementation of biosynthetic precursors, as well as examination of the impact of light conditions (monochromatic lights, white light, darkness, UV-A irradiation), and culture type (agar callus cultures and agar, agitated and bioreactor shoot cultures). In addition, the biotransformation potential of cells from agitated shoot cultures and high production of arbutin from exogenous hydroquinone were presented. Finally, the evaluation of efficacy and potential applications of biotechnological studies have been outlined. The obtained biotechnological results have documented that shoot cultures of A. melanocarpa could be a rich potential source of phenolic acids and arbutin, which are valuable products with therapeutic, health-promoting, and cosmetological values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

DW:

Dry weight

FW:

Fresh weight

HPLC-DAD:

High-pressure liquid chromatography with diode array detector

LS:

Linsmaier and Skoog

MS:

Murashige and Skoog

NAA:

1-naphthaleneacetic acid

PGRs:

Plant growth regulators

References

  • Andrzejewska J, Sadowska K, Klóska Ł, Rogowski L (2015) The effect of plant age and harvest time on the content of chosen components and antioxidative potential of black chokeberry fruit. Acta Sci Pol Hortorum Cultus 14(4):105–114

    Google Scholar 

  • Augustyniak A, Bartosz G, Čipak A, Duburs G, Horáková U, Łuczaj W et al (2010) Natural and synthetic antioxidants: an updated overview. Free Radical Res 44(10):1216–62 https://www.bib.irb.hr/487622

  • Badescu M, Badulescu O, Badescu L, Ciocoiu M (2015) Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol Informa Healthc 53(4):533–539

    Article  CAS  Google Scholar 

  • Bell DR, Gochenaur K (2006) Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol 100(4):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Benvenuti S, Pellati F, Melegari M, Bertelli D (2006) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes, and aronia. J Food Sci 69(3):164–169

    Article  Google Scholar 

  • Bermúdez-Soto MJ, Larrosa M, García-Cantalejo JM et al (2007a) Transcriptional changes in human Caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice. In: Genes & nutrition. Springer, pp 111–113

    Google Scholar 

  • Bermúdez-Soto MJ, Larrosa M, Garcia-Cantalejo JM et al (2007b) Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice. J Nutr Biochem 18(4):259–271

    Article  PubMed  CAS  Google Scholar 

  • Bijak M, Saluk J, Antosik A, Ponczek MB, Zbikowska HM, Borowiecka M et al (2013) Aronia melanocarpa as a protector against nitration of fibrinogen. Int J Biol Macromol 55:264–268

    Article  CAS  PubMed  Google Scholar 

  • BIOnly (2020) Aronia czarnoowocowa (Aronia melanocarpa) [Internet]. Kosmet. Nat. Org. bio. [cited 2020 Dec 27]. Available from: https://www.bionly.pl/pl/articles/details/72/porady

  • Borowska S, Brzóska MM (2016) Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf 15(6):982–1017

    Article  CAS  PubMed  Google Scholar 

  • Brand MH (2010) Aronia: native shrubs with untapped potential. Aroldia 67:14–25

    Google Scholar 

  • Brand MH, Cullina WG (1992) Micropropagation of red and black chokeberry (Aronia spp.). Hort Sci 27(1):81–81

    Google Scholar 

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247

    Article  CAS  Google Scholar 

  • Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J (2010) Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med Sci Monit Inter Sci Info Inc 16(1):CR28–CR34

    Google Scholar 

  • Brzóska MM, Rogalska J, Galazyn-Sidorczuk M, Jurczuk M, Roszczenko A, Tomczyk M (2015) Protective effect of Aronia melanocarpa polyphenols against cadmium-induced disorders in bone metabolism: A study in a rat model of lifetime human exposure to this heavy metal. Chem Biol Interact 229:132–146

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celka Z, Szkudlarz P (2010) Spontaneous occurrence and dispersion of Aronia x prunifolia (Marshall) Rehder (Rosaceae) in Poland on the example of the “Bagna” bog complex near Chlebowo (Western Poland). Acta Soc Bot Pol 79(1):37–42

    Article  Google Scholar 

  • Chrubasik C, Li G, Chrubasik S (2010) The clinical effectiveness of chokeberry: a systematic review. Phytother Res 24(8):1107–11014

    CAS  PubMed  Google Scholar 

  • CosIng (2020) CosIng—cosmetic ingredients database [Internet]. European Communications [cited 2 Dec 2020]. Available from: http://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.results

  • Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG (2012) Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: a review. Compr Rev Food Sci Food Saf 11(5):471–489

    Article  CAS  Google Scholar 

  • Denev P, Číž M, Kratchanova M, Blazheva D (2019) Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem 30(284):108–117

    Article  CAS  Google Scholar 

  • EFSA (2011) Scientific opinion part I on the substantiation of health claims related to various food(s)/food constituent(s) not supported by pertinent human data (ID 411, 559, 1174, 1184, 1197, 1380, 1409, 1656, 1667, 1670, 1763, 1767, 1806, 1884, 1908, 1997, 2141 2). EFSA J 9(6)

    Google Scholar 

  • Gasiorowski KB, Brokos B, Kozubek A, Oszmianski J (2000) The antimutagenic activity of two plant—derived compounds. A comparative cytogenetic study. Cell Mol Biol Lett 2(05)

    Google Scholar 

  • Gramza-Michałowska A, Sidor A, Kulczyński B (2017) Berries as a potential anti-influenza factor—a review. J Funct Foods 37:116–137

    Article  CAS  Google Scholar 

  • Gruszczyk M, Kołodziej B, Król B, Sugier D, Wiśniewski J, Nurzyńska-Widerek R et al (2018) Uprawa ziół. Poradnik dla plantatorów. wydanie II. Warszawa: Powszechne Wydawnictwo Rolnicze i Leśne

    Google Scholar 

  • Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  • Jakobek L (2007) Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agric Conspec Sci 72(4):301–306

    Google Scholar 

  • Jakobek L, Drenjančević M, Jukić V, Šeruga M (2012) Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Sci Hortic 147:56–63

    Article  CAS  Google Scholar 

  • Jan Niedworok FB (2001) The investigation of a biological and phytotherapeutical properties of the Aronia melanocarpa E. anthocyanins. Postępy Fitoter 1:20–24

    Google Scholar 

  • Jeppsson NJ (1999) Evaluation of black chokeberry, Aronia melanocarpa, germplasm for production of natural food colourants. Acta Hortic Int Soc Hort Sci 484:193–198

    Google Scholar 

  • **g P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56(20):9391–9398

    Article  CAS  PubMed  Google Scholar 

  • Jodynis-Liebert J, Adamska T, Ewertowska M et al (2014) Effects of long-term administration of freeze-dried chokeberry juice to rats. J Pharm Nutr Sci 4(2):154–161

    Article  CAS  Google Scholar 

  • Jurgoński A, Juśkiewicz J, Zduńczyk Z (2008) Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods Hum Nutr 63(4):176–182

    Article  PubMed  Google Scholar 

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. 2014, Article ID 952943, 9 pages http://dx.doi.org/10.1155/2014/952943

  • Kattappagari K, Ravi Teja C, Kommalapati R et al (2015) Role of antioxidants in facilitating the body functions: a review. J Orofac Sci Medknow Publications 7(2):75

    Google Scholar 

  • Kim B, Ku CS, Pham TX, Park Y, Martin DA, **e L et al (2013) Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutr Res 33(5):406–413

    Article  CAS  PubMed  Google Scholar 

  • King ES, Bolling BW (2020) View of composition, polyphenol bioavailability, and health benefits of aronia berry: a review. J Food Bioact 11:13–30

    Article  Google Scholar 

  • Kitrytė V, Kraujalienė V, Šulniūtė V, Pukalskas A, Venskutonis PR (2017) Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: process optimization and product characterization. Food Bioprod Process 105:36–50

    Article  CAS  Google Scholar 

  • Kleparski J, Domino Z (1990) Aronia. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa

    Google Scholar 

  • Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food 13(2):255–269

    Article  CAS  PubMed  Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233

    Article  CAS  Google Scholar 

  • Kubica P, Pałka A, Szopa A, Ekiert H (2019a) Production of phenolic acids in shoot cultures of black aronia (Aronia melanocarpa) cultivated in RITA bioreactors. In: 67th International Congress Annual Meeting of the Society for Medicinal Plant and Natural Product Research, Innsbruck

    Google Scholar 

  • Kubica P, Szopa A, Żywko J, Pałka A, Ekiert H (2019b) Agitated and bioreactor’s cultures of aronia species—investigations on accumulation dynamics of bioactive phenolic acids during the growth cycles. In: XI Conference “In vitro cultures in biotechnology plant physiology”. 4–6 December 2019, Kraków (Poland)

    Google Scholar 

  • Kubica P, Pałka A, Szopa A, Ekiert H (2020) Accumulation of phenolic acids in in vitro cultures of black aronia (Aronia melanocarpa) cultivated in PlantForm bioreactors. 3rd ICPMS Martin, Kraków, Szeged

    Google Scholar 

  • Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects. Planta Med 74(13):1625–1634

    Article  CAS  PubMed  Google Scholar 

  • Kwiecień I, Szopa A, Madej K, Ekiert H (2013) Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott. Acta Biochim Pol 60(4):865–870

    PubMed  Google Scholar 

  • Lala G, Malik M, Zhao CW, He J, Kwon Y, Giusti MM et al (2006) Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer Int J 54(1):84–93

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18(1):100–127

    Article  CAS  Google Scholar 

  • Litwinczuk W (2002) Propagation of black chokeberry (Aronia melanocarpa Elliot) through in vitro culture. Electron J Polish Agric Univ Ser Hortic 5(2)

    Google Scholar 

  • Malik M, Zhao C, Schoene N, Guisti MM, Moyer MP, Magnuson BA (2003) Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells. Nutr Cancer 46(2):186–196

    Article  CAS  PubMed  Google Scholar 

  • Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evidence-based Complement Altern Med Hindawi Pub Corp 801457

    Google Scholar 

  • Michalak P (2015) Aronia planter’s guide, 1st edn. Dąbie

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–479

    Article  CAS  Google Scholar 

  • Naruszewicz M, Łaniewska I, Millo B, Dłuzniewski M (2007) Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 194(2):179–184

    Article  CAS  Google Scholar 

  • Niedworok J, Gwardys A, Jankowski A, Kowalczyk E, Oszmański J, Skośkiewicz J (1999) Badania nad protekcyjnym wpływem żelu antocyjaninowego na fototoksyczne działanie promieni UV. Ochr Środ Zas Nat 18:83–87

    Google Scholar 

  • Oszmianski J, Wojdylo A, Oszmiański J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221(6):809–813

    Article  CAS  Google Scholar 

  • Park H, Liu Y, Kim HS, Shin JH (2016) Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr Res 36(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jiménez J, Neveu V, Vos F, Scalbert A (2010) Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr 64(3):112–120

    Article  CAS  Google Scholar 

  • Petrovic DM, Jacimovic-Plavšic MM (1992) Aronia melancarpa and propagation in vitro. Acta Hortic 300:133–136

    Article  Google Scholar 

  • Piotrowska-Kempisty H, Nowicki M, Jodynis-Liebert J et al (2020) Assessment of hepatoprotective effect of chokeberry juice in rats treated chronically with carbon tetrachloride. Mol MDPI AG 25(6):1268

    CAS  Google Scholar 

  • Pool-Zobel BL, Bub A, Schröder N, Rechkemmer G (1999) Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr 38(5):227–234

    Article  CAS  PubMed  Google Scholar 

  • Pratheeshkumar P, Son YO, Wang X, Divya SP et al (2014) Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 280(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razungles A, Oszmański J, Sapis J-C (1989) Determination of Carotenoids in Fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of Chokeberry (Aronia melanocarpa). J Food Sci 54(3):774–775

    Google Scholar 

  • Rop O, Mlcek J, Jurikova T, Valsikova M et al (2010) Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J Med Plants Res 4(22):2431–2437

    Google Scholar 

  • Rugină D, Sconţa Z, Leopold L, Pintea A, Bunea A, Socaciu C (2012) Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells. J Med Food 15(8):700–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rumińska A (1984) Poradnik plantatora ziół. Państwowe Wydawnictwo Rolnicze i Leśne—oddział w Poznaniu, Poznań

    Google Scholar 

  • Ruzic D (1993) In vitro rooting and subsequent growth of black chokeberry (Aronia melanocarpa) plants ex vitro. J Fruit Ornam Plant Res. Research Institute of Pomology and Floriculture 1:1–8

    Google Scholar 

  • Ryszawa N, Kawczyńska-Drózdz A, Pryjma J et al (2006) Effects of novel plant antioxidants on platelet superoxide production and aggregation in atherosclerosis. J Physiol Pharmacol 57(4):611–626

    CAS  PubMed  Google Scholar 

  • Saruwatari A, Isshiki M, Tamura H (2008) Inhibitory effects of various beverages on the sulfoconjugation of 17β-estradiol in human colon carcinoma caco-2 cells. Biol Pharm Bull Pharmaceu Soc Japan 31(11):2131–2136

    Article  CAS  Google Scholar 

  • Senderski ME (2004) Prawie wszystko o ziołach. Wydanie pi. Mateusz E. Senderski, Podkowa Leśna

    Google Scholar 

  • Sharif T, Alhosin M, Auger C, Minker C et al (2012) Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells. PLoS One 7(3)

    Google Scholar 

  • Sidor A, Gramza-Michałowska A (2019) Qualitative composition, phenolic profile and antioxidant potential. Molecules 24(20):3710. https://doi.org/10.3390/molecules24203710

  • Sidor A, Drożdżyńska A, Gramza-Michałowska A (2019) Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—an overview. Trends Food Sci Technol 89:45–60

    Article  CAS  Google Scholar 

  • Sikora J, Markowicz M, Mikiciuk-Olasik E (2009) Rola i właściwości lecznicze aronii czarnoowocowej w profilaktyce chorób cywilizacyjnych. Bromat Chem Toksykol XLII(1):10–17

    Google Scholar 

  • Skupień K, Kostrzewa-Nowak D, Oszmiański J, Tarasiuk J (2008) In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa (Michx) Elliott) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phyther Res 22(5):689–694

    Google Scholar 

  • Slimestad R, Torskangerpoll K, Nateland HS, Johannessen T, Giske NH (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compos Anal 18(1):61–68

    Article  CAS  Google Scholar 

  • Stralsjoe L, Ahlin H, Witthoeft CM, Jastrebova J (2003) Folate determination in Swedish berries by radioprotein-binding assay (RPBA) and high performance liquid chromatography (HPLC). Eur Food Res Technol 216(3):264–269

    Article  CAS  Google Scholar 

  • Sueiro L, Yousef GG, Seigler D, De Mejia EG, Grace MH, Lila MA (2006) Chemopreventive potential of flavonoid extracts from plantation-bred and wild Aronia melanocarpa (black chokeberry) fruits. J Food Sci 71(8):C480–C488

    Article  CAS  Google Scholar 

  • Szopa A, Ekiert H (2014) Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regul 72(1):51–58

    Google Scholar 

  • Szopa A, Ekiert H, Muszyńska B (2013) Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell Tiss Org Cult 113(2):323–329

    Google Scholar 

  • Szopa A, Setkiewicz A, Ekiert H (2015) Aronia melanocarpa (black chokeberry) in vitro cultures—potential source of bioactive phenolic acids for phytotherapy. In: Conference. Bonn

    Google Scholar 

  • Szopa A, Kokotkiewicz A, Kubica P, Banaszczak P et al (2017a) Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia and A. x prunifolia, and their antioxidant activities. Eur Food Res Technol 243(9):1645–1657. https://doi.org/10.1007/s00217-017-2872-8

  • Szopa A, Kubica P, Ekiert H (2017b) Ecology, chemical composition, health-promoting effects and biotechnological studies on black chokeberry (Aronia melanocarpa), red chokeberry (Aronia arbutifolia) and purple chokeberry (Aronia × prunifolia). Postępy Fitoter 18(2):145–157

    Google Scholar 

  • Szopa A, Kubica P, Ekiert H (2018a) High production of depsides and other phenolic acids in different types of shoot cultures of three aronias: Aronia melanocarpa, A. arbutifolia and A. × prunifolia. In: Ramawat KG, Ekiert MH, Goyal S (eds) Plant cell tissue differentiation and secondary metabolites. Springer, Berlin Heidelberg, pp 309–336

    Google Scholar 

  • Szopa A, Starzec A, Ekiert H (2018b) The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. J Photochem Photobiol B Biol 179:91–97

    Article  CAS  Google Scholar 

  • Szopa A, Kubica P, Komsta Ł, Walkowicz-Bożek A, Ekiert H (2020) The effect of feeding culture media with biogenetic precursors on high production of depsides in agitated shoot cultures of black and red aronias. Plant Cell Tiss Org Cult 142:379–399

    Article  CAS  Google Scholar 

  • Taheri R, Connolly BA, Brand MH, Bolling BW (2013) Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J Agric Food Chem 61(36):8581–8588

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka A (2001) Chemical components and characteristics of black chokeberry. J Jpn Soc Food Sci Technol 48:606–610

    Article  CAS  Google Scholar 

  • Thani NAA, Keshavarz S, Lwaleed BA, Cooper AJ, Rooprai HK (2014) Cytotoxicity of gemcitabine enhanced by polyphenolics from Aronia melanocarpa in pancreatic cancer cell line AsPC-1. J Clin Pathol 67(11):949–954

    Article  PubMed  Google Scholar 

  • Tian Y, Liimatainen J, Alanne AL, Lindstedt A, Liu P, Sinkkonen J et al (2017) Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 220:266–281: http://dx.doi.org/10.1016/j.foodchem.2016.09.145

  • Tolić MT, Jurčević IL, Krbavčić IP, Marković K, Vahčić N (2015) Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol Biotechnol 53(2):171–179

    PubMed  PubMed Central  Google Scholar 

  • Tolić MT, Krbavčić IP, Vujević P, Milinović B, Jurčević IL, Vahčić N(2017) Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Polish J Food Nutr Sci 67(1):67–74

    Google Scholar 

  • University of Maine (2020) Plant description and habitat of aronia (black chokeberry) Orono, Maine. https://extension.umaine.edu/agriculture/aronia/plant-description-and-habitat/

  • Vagiri M, Jensen M (2017) Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chem 217:409–417

    Article  CAS  PubMed  Google Scholar 

  • Valcheva-Kuzmanova S, Belcheva A (2006) Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med (Plovdiv) 48(2):11–17

    Google Scholar 

  • Valcheva-Kuzmanova S, Borisova P, Galunska B, Krasnaliev I, Belcheva A (2004) Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Exp Toxicol Pathol 56(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Valcheva-Kuzmanova S, Marazova K, Krasnaliev I, Galunska B, Borisova P, Belcheva A (2005) Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats. Exp Toxicol Pathol 56(6):385–392

    Article  CAS  PubMed  Google Scholar 

  • Valcheva-Kuzmanova S, Kuzmanov K, Tancheva S, Belcheva A (2007) Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 29(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Espinosa M, V. González-de-Peredo A, Espada-Bellido E et al (2019) Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia melanocarpa L.): optimization of the individual and simultaneous extraction methods. Agronomy. MDPI AG 9(8):456

    Google Scholar 

  • Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M (2015) Anthocyanin composition of different wild and cultivated berry species. LWT 60(1):509–517

    Article  CAS  Google Scholar 

  • Vlachojannis C, Zimmermann BF, Chrubasik-Hausmann S (2015) Quantification of anthocyanins in elderberry and chokeberry dietary supplements. Phyther Res 29(4):561–565

    Article  CAS  Google Scholar 

  • Walther E, Schnell S (2009) Black chokeberry (Aronia melanocarpa)-a special fruit crop. Zeitschrift für Arznei- & Gewürzpflanzen 14(4):179–182

    Google Scholar 

  • Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  • Wangensteen H, Bräunlich M, Nikolic V et al (2014) Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: antioxidant and enzyme inhibitory effects. J Funct Foods 7(1):746–752

    Article  CAS  Google Scholar 

  • Wawer I (2006) Aronia Polski Paradoks. Agropharm, Warszawa

    Google Scholar 

  • Wawer I, Eggert P, Hołub B (2012) Aronia super owoc. Wektor, Warszawa

    Google Scholar 

  • Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44(4):275–295

    Article  CAS  PubMed  Google Scholar 

  • Wolski T, Kalisz O, Prasał M (2007) Black chokeberry—Aronia melanocarpa (Michx.) Elliott—the rich source of antioxidants. Postępy Fitoter 3:145–154

    Google Scholar 

  • Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52(26):7846–7856

    Article  CAS  PubMed  Google Scholar 

  • Yamane T, Kozuka M, Wada-Yoneta M, Sakamoto T et al (2017) Aronia juice suppresses the elevation of postprandial blood glucose levels in adult healthy Japanese. Clin Nutr Exp 12:20–26

    Article  Google Scholar 

  • Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42

    Article  Google Scholar 

  • Zhao C, Giusti MM, Malik M, Moyer MP, Magnuson BA (2004) Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem 52(20):6122–6128

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51(2):502–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding

This study was supported by the financial support of the funds of the Ministry of Science and Higher Education Programs: K/DSC/003506, N42/DBS/000010, N42/DBS/000011.

Author Contribution Statement

All the authors read and approved the manuscript in its final form. All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halina Ekiert or Agnieszka Szopa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekiert, H., Kubica, P., Szopa, A. (2021). Successful Cultivation and Utilization of Aronia melanocarpa (Michx.) Elliott (Black Chokeberry), a Species of North-American Origin, in Poland and the Biosynthetic Potential of Cells from In Vitro Cultures. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_4

Download citation

Publish with us

Policies and ethics

Navigation