Tractable Non-Gaussian Representations in Dynamic Data Driven Coherent Fluid Map**

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

This chapter discusses the elements of a Dynamic Data Driven Applications System in the context of map** coherent environmental fluids using autonomous small unmanned aircraft. The application and and its underlying system dynamics and optimization are presented along with three key ideas. The first is that of a dynamically deformable reduced model, which enables efficacious prediction by solving non-Gaussian problems associated with coherent fluids. The second is the use of ensemble learning in nonlinear estimation, which mitigates model errors in the form of bias, reduces sampling burdens in estimation whilst offering direct state space adjustments for filtering and smoothing and producing compact posterior ensembles. The third idea is the use of tractable variational information theoretic inference in estimation that also requires minimal resampling and allows for gradient-based inferences for non-Gaussian high-dimensional problems with few samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Maximum a posteriori (MAP) problem can also be solved.

References

  1. D.L. Alspach, H.W. Sorenson, Nonlinear bayesian estimation using gaussian sum approximations. IEEE Trans. Autom. Control 17, 439–448 (1972)

    Article  Google Scholar 

  2. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proc. 50(2), 174–188 (2002)

    Article  Google Scholar 

  3. T. Bengtsson, C. Snyder, D. Nychka, Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775 (2003)

    Google Scholar 

  4. H.L. Choi, Adaptive sampling and forecasting with mobile sensor networks. Ph.D. thesis, Massachusetts Institute of Technology, 2009

    Google Scholar 

  5. H.-L. Choi, S.-J. Lee, A potential game approach for information-maximizing cooperative planning of sensor networks. IEEE Trans. Control Syst. Technol. 23(6), 2326–2335 (2015)

    Article  Google Scholar 

  6. S.C. Choi, R. Wette, Maximum likelihood estimation of the parameters of the Gamma distribution and their bias. Technometrics 11, 683–690 (1969)

    Article  Google Scholar 

  7. L. Dovera, E.D. Rossa, Multimodal ensemble Kalman filtering using gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)

    Article  Google Scholar 

  8. J. Dunik, O. Straka, M. Simandl, E. Blasch, Sigma-point set rotation for derivative-free filters in target tracking applications. J. Adv. Inf. Fusion 11(1), 91–109 (2016)

    Google Scholar 

  9. J. Duyck, C. Finn, A. Hutcheon, P. Vera, J. Salas, S. Ravela, Sloop: a pattern retrieval engine for individual animal identification. Pattern Recognit. 48(4), 1059–1073 (2015)

    Article  Google Scholar 

  10. S. Dzeroski, B. Zenko, Is combining classifiers better than selecting the best one? in Proceedings of the Nineteenth International Conference on Machine Learning (ICML ’02) (Morgan Kaufmann, San Francisco, 2004) pp. 255–273

    MATH  Google Scholar 

  11. G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  12. M. Frei, H.R. Kunsch, Mixture ensemble Kalman filters. Comput. Stat. Data Anal. 58, 127–138 (2013)

    Article  MathSciNet  Google Scholar 

  13. J. Gama, P. Brazdil, Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)

    Article  Google Scholar 

  14. A. Gelb, Applied Optimal Estimation (The MIT Press, Cambridge, 1974)

    Google Scholar 

  15. I. Hoteit, D.T. Pham, G. Triantafyllou, G. Korres, A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Weather Rev. 136, 317–334 (2008)

    Article  Google Scholar 

  16. J.N. Kapur, Measures of Information and Their Applications (Wiley, New Delhi, 1994)

    MATH  Google Scholar 

  17. C. Kern, C. Werner, T. Elias, A.J. Sutton, P. Lubcke, Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes. J. Volcanol. Geotherm. Res. 262, 80–89 (2013)

    Article  Google Scholar 

  18. R. Liu, D.F. Gillies, An estimate of mutual information that permits closed-form optimization. Entropy 15, 1690–1704 (2013)

    Article  MathSciNet  Google Scholar 

  19. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  20. G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley-Interscience, Hoboken, 2008)

    Book  Google Scholar 

  21. E. Parzen, On the estimation of probability density function and the mode. Ann. Math. Stat. 33, 1065 (1962)

    Article  MathSciNet  Google Scholar 

  22. J.W. Principe, J.W. Fisher, D. Xu, Information Theoretic Learning (Wiley, New York, 2000)

    MATH  Google Scholar 

  23. J. Prüher, F. Tronarp, T. Karvonen, S. Särkkä, O. Straka, Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise, in International Conference on Information Fusion, Piscataway, 2017

    Google Scholar 

  24. S. Ravela, Data assimilation by maximizing mutual information. Geophys. Res. Abstr. 10, EGU2008–A–11090 (2008)

    Google Scholar 

  25. S. Ravela, Quantifying uncertainty for coherent structures. Proc. Comput. Sci. 9, 1187–1196 (2012)

    Article  Google Scholar 

  26. S. Ravela, Map** coherent atmospheric structures with small unmanned aircraft systems, in AIAA InfotechAerospace (IA) Conference, Guidance, Navigation, and Control and Co-located Conferences, (AIAA 2013-4667), 2013

    Google Scholar 

  27. S. Ravela, Spatial inference for coherent geophysical fluids by appearance and geometry, in Winter Conference on Applications of Computer Vision, 2014

    Google Scholar 

  28. S. Ravela, Dynamic data-driven deformable reduced models for coherent fluids. Proc. Comput. Sci. 51, 2464–2473 (2015)

    Article  Google Scholar 

  29. S. Ravela, D. McLaughlin, Fast ensemble smoothing. Ocean Dyn. 57, 123–134 (2007)

    Article  Google Scholar 

  30. S. Ravela, K. Emanuel, M. McLaughlin, Data assimilation by field alignment. Physica D 230, 127–145 (2007)

    Article  MathSciNet  Google Scholar 

  31. A Renyi, On measure of entropy and information, in Fourth Symposium on Mathematical Statistics and Probability, Berkeley, 1961

    Google Scholar 

  32. H. Seybold, S. Ravela, P. Tagade, Ensemble learning in non-gaussian data assimilation. Lect. Notes Comput. Sci. 8964, 227–238 (2015)

    Article  Google Scholar 

  33. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  34. K.W. Smith, Cluster ensemble Kalman filter. Tellus 59, 749–757 (2007)

    Article  Google Scholar 

  35. T. Sondergaard, P.F.J. Lermusiaux, Data assimilation with gaussian mixture models using dynamically orthogonal field equations. Part 1: theory and scheme. Mon. Weather Rev. 141, 1737–1760 (2013)

    Google Scholar 

  36. P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems, in Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, 10–12 June 2014, pp. 1266–1276

    Google Scholar 

  37. P.M. Tagade, H.-L. Choi, A dynamic bi-orthogonality based approach for uncertainty quantification of stochastic systems with discontinuities. ASME J. Verification, Validation Uncertain. Quantif. 2(1), 011003–011012 (2017)

    Google Scholar 

  38. P.M. Tagade, S. Ravela, A quadratic information measure for data assimilation, in American Control Conference, Portland, 2014

    Google Scholar 

  39. Y. Tomita, S. Omatu, T. Soeda, An application of the information theory to filtering problems. Inf. Sci. 11, 13–27 (1976)

    Article  Google Scholar 

  40. K. Torkkola, Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)

    MathSciNet  MATH  Google Scholar 

  41. D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  42. C.M. Yang, S. Ravela, Deformation invariant image matching by spectrally controlled diffeomorphic alignment, in 2009 IEEE 12th International Conference on Computer Vision, Piscataway, 2009, pp. 1303–1310

    Google Scholar 

Download references

Acknowledgements

This work was in part supported by AFOSR(FA9550-12-1-0313) and NSF DBI-1146747, the MISTI seed fund, a Seaver award and an ESI seed grant. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF or AFOSR or MISTI. Special thanks to K. Emanuel, J. How, H.-L. Choi, J. Salas, P. Tagade, C. Denamiel, H. Seybold, R. Westlund, O. Gonzalez, B. Rosas and many undergraduate students and collaborators of ESSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ravela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravela, S. (2022). Tractable Non-Gaussian Representations in Dynamic Data Driven Coherent Fluid Map**. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-74568-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74568-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74567-7

  • Online ISBN: 978-3-030-74568-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation