Emerging Polymer-Based Nanomaterials for Cancer Therapeutics

  • Chapter
  • First Online:
Cancer Nanotheranostics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 540 Accesses

Abstract

Cancer is a highly complex disease and a global health challenge with tumour heterogeneity and therapy resistance posing major hurdles in its successful treatment. Nanomaterials have revolutionized the current delivery of cancer therapy and diagnosis. To overcome the drawbacks of conventional cancer treatment, it is necessary to smartly design and tailor-make nanomaterials which precisely recognize and deliver the drug payload at the targeted site of tumour. Polymer-based nanomaterials exhibit unique physicochemical properties which make them potential carriers for cancer therapy. The functional groups present naturally or produced synthetically on the surface of polymers facilitate the conjugation or the encapsulation of incompatible antitumour drugs enabling site-directed delivery. In recent years, different types of polymer-based nanomaterials like polymeric micelles, polymer-drug conjugates, polyplexes, polymersomes, etc. have been investigated as nanocarriers for drug delivery. These nanomaterials have shown remarkable results in clinical studies such as chemotherapeutic efficiency, efficacy and reduction in side effects. Moreover, different strategies can be implemented to release the drug payload from the encapsulated nanomaterial to the targeted site using internal or external stimuli or through antibody, aptamer, enzyme or receptor polymer conjugation.

This chapter is a broad review on the application of different types of polymer-based nanoparticles and the different strategies adopted for targeting cancer cells. Further, it also highlights the current status of preclinical and clinical studies being carried out using polymeric nanoparticle technology and its impact on cancer treatment in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acharya, S., Dilnawaz, F., & Sahoo, S. K. (2009). Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 30(29), 5737–5750.

    Article  CAS  PubMed  Google Scholar 

  • Adeli, M., Kalantari, M., Parsamanesh, M., Sadeghi, E., & Mahmoudi, M. (2011). Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 7(6), 806–817.

    Article  CAS  Google Scholar 

  • Agarwal, S., Dominic, A., & Wasnik, S. (2019). An overview of polymeric nanoparticles as potential cancer therapeutics. In Polymeric nanoparticles as a promising tool for anti-cancer therapeutics (pp. 21–34). Elsevier.

    Chapter  Google Scholar 

  • Ahmad, Z., Lv, S., Tang, Z., Shah, A., & Chen, X. (2016). Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 27(1), 40–54.

    Article  CAS  Google Scholar 

  • Allen, C. (2016). Why I’m holding onto hope for nano in oncology. Molecular Pharmaceutics, 13(8), 2603–2604.

    Article  CAS  PubMed  Google Scholar 

  • Alshaer, W., Hillaireau, H., & Fattal, E. (2018). Aptamer-guided nanomedicines for anticancer drug delivery. Advanced Drug Delivery Reviews, 134, 122–137.

    Article  CAS  PubMed  Google Scholar 

  • Aryal, S., Hu, C.-M. J., & Zhang, L. (2010). Polymer− cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano, 4(1), 251–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atrafi, F., Dumez, H., Mathijssen, R. H., Menke, C. W., Costermans, J., Rijcken, C. J., Hanssen, R., Eskens, F., & Schoffski, P. (2019). A phase I dose-finding and pharmacokinetics study of CPC634 (nanoparticle entrapped docetaxel) in patients with advanced solid tumors. American Society of Clinical Oncology, Alexandria.

    Book  Google Scholar 

  • Autio, K. A., Garcia, J. A., Alva, A. S., Hart, L. L., Milowsky, M. I., Posadas, E. M., Ryan, C. J., Summa, J. M., Youssoufian, H., & Scher, H. I. (2016). A phase 2 study of BIND-014 (PSMA-targeted docetaxel nanoparticle) administered to patients with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC). American Society of Clinical Oncology.

    Book  Google Scholar 

  • Barzegar Behrooz, A., Nabavizadeh, F., Adiban, J., Shafiee Ardestani, M., Vahabpour, R., Aghasadeghi, M. R., & Sohanaki, H. (2017). Smart bomb AS 1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clinical and Experimental Pharmacology and Physiology, 44(1), 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Bessone, M. I. D., Simón-Gracia, L., Scodeller, P., de los Angeles Ramirez, M., Huvelle, M. A. L., Soler-Illia, G. J., & Simian, M. (2019). iRGD-guided tamoxifen polymersomes inhibit estrogen receptor transcriptional activity and decrease the number of breast cancer cells with self-renewing capacity. Journal of Nanobiotechnology, 17(1), 1–14.

    Google Scholar 

  • Betea, D., Potorac, I., & Beckers, A. (2015). Parathyroid carcinoma: challenges in diagnosis and treatment. Annales d’Endocrinologie, Elsevier, 76, 169–177.

    Article  Google Scholar 

  • Biganzoli, L., Untch, M., Skacel, T., & Pico, J.-L. (2004). Neulasta (pegfilgrastim): a once-per-cycle option for the management of chemotherapy-induced neutropenia. Seminars in Oncology, Elsevier, 31, 27–34.

    Article  CAS  Google Scholar 

  • Boddy, A., Todd, R., Verrill, M., Sludden, J., Fishwick, K., Robson, L., Cassidy, J., Bisset, D., Garzone, P., & Calvert, A. (2002). Pharmacological study of CT-2103 (XyotaxTM), a poly (L-glutamic acid)-paclitaxel conjugate administered every 3 weeks or every 2 weeks in a phase I study. European Journal of Cancer, 38, 98.

    Google Scholar 

  • Bordat, A., Boissenot, T., Nicolas, J., & Tsapis, N. (2019). Thermoresponsive polymer nanocarriers for biomedical applications. Advanced Drug Delivery Reviews, 138, 167–192.

    Article  CAS  PubMed  Google Scholar 

  • Butt, A. M., Amin, M. C. I. M., Katas, H., Abdul Murad, N. A., Jamal, R., & Kesharwani, P. (2016). Doxorubicin and siRNA codelivery via chitosan-coated pH-responsive mixed micellar polyplexes for enhanced cancer therapy in multidrug-resistant tumors. Molecular Pharmaceutics, 13(12), 4179–4190.

    Article  CAS  PubMed  Google Scholar 

  • Carie, A., Rios-Doria, J., Costich, T., Burke, B., Slama, R., Skaff, H., & Sill, K. (2011). IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models. Journal of Drug Delivery, 2011, 869027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavanpatil, M. D., Khdair, A., Gerard, B., Bachmeier, C., Miller, D. W., Shekhar, M. P., & Panyam, J. (2007). Surfactant–polymer nanoparticles overcome P-glycoprotein-mediated drug efflux. Molecular Pharmaceutics, 4(5), 730–738.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Wang, H., Zhang, Y., Wang, Y., Hu, Q., & Ji, J. (2013). Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells. Colloids and Surfaces B: Biointerfaces, 111, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. H., Yang, C. X., Qiu, W. X., Luo, G. F., Jia, H. Z., Lei, Q., Wang, X. Y., Liu, G., Zhuo, R. X., & Zhang, X. Z. (2015). Multifunctional theranostic nanoplatform for cancer combined therapy based on gold nanorods. Advanced Healthcare Materials, 4(15), 2247–2259.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Li, S., Feng, Z., Wang, M., Cai, C., Wang, J., & Zhang, L. (2017). Poly (2-(diethylamino) ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release. International Journal of Nanomedicine, 12, 6857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, R., Feng, F., Meng, F., Deng, C., Feijen, J., & Zhong, Z. (2011). Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 152(1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Chidambaram, M., Manavalan, R., & Kathiresan, K. (2011). Nanotherapeutics to overcome conventional cancer chemotherapy limitations. Journal of Pharmacy & Pharmaceutical Sciences, 14(1), 67–77.

    Article  Google Scholar 

  • Choi, S.-W., & Kim, J.-H. (2007). Design of surface-modified poly (D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. Journal of Controlled Release, 122(1), 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Choi, K. Y., Min, K. H., Yoon, H. Y., Kim, K., Park, J. H., Kwon, I. C., Choi, K., & Jeong, S. Y. (2011). PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 32(7), 1880–1889.

    Article  CAS  PubMed  Google Scholar 

  • Couture, O., Foley, J., Kassell, N. F., Larrat, B., & Aubry, J.-F. (2014). Review of ultrasound mediated drug delivery for cancer treatment: Updates from pre-clinical studies. Translational Cancer Research, 3(5), 494–511.

    CAS  Google Scholar 

  • Danhier, F. (2011). Comparison between two anti-tumoral strategies: passive and active targeting of nanoencapsulated anti-cancer drugs. UCL-Université Catholique de Louvain.

    Google Scholar 

  • Danhier, F., Lecouturier, N., Vroman, B., Jérôme, C., Marchand-Brynaert, J., Feron, O., & Préat, V. (2009). Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of Controlled Release, 133(1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Danhier, F., Messaoudi, K., Lemaire, L., Benoit, J.-P., & Lagarce, F. (2015). Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. International Journal of Pharmaceutics, 481(1–2), 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Das, S. S., Bharadwaj, P., Bilal, M., Barani, M., Rahdar, A., Taboada, P., Bungau, S., & Kyzas, G. Z. (2020). Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 12(6), 1397.

    Article  CAS  PubMed Central  Google Scholar 

  • Della Corte, C. M., Ajpacaja, L., Cardnell, R., Gay, C., Wang, Q., Shen, L., Ramkumar, K., Stewart, A., Fan, Y.-H., & Adelman, C. (2019). Activity of the novel Aurora kinase B inhibitor AZD2811 in biomarker-defined models of small cell lung cancer. Annals of Oncology, 30, v716.

    Article  Google Scholar 

  • Donnellan, W. B., Atallah, E. L., Asch, A. S., Patel, M. R., Yang, J., Eghtedar, A., Borthakur, G. M., Charlton, J., MacDonald, A., & Korzeniowska, A. (2019). A Phase I/II study of AZD2811 nanoparticles (NP) as monotherapy or in combination in treatment-naïve or relapsed/refractory AML/MDS patients not eligible for intensive induction therapy. American Society of Hematology.

    Book  Google Scholar 

  • Dreicer, R., Manola, J., Roth, B. J., See, W. A., Kuross, S., Edelman, M. J., Hudes, G. R., & Wilding, G. (2004). Phase III trial of methotrexate, vinblastine, doxorubicin, and cisplatin versus carboplatin and paclitaxel in patients with advanced carcinoma of the urothelium: A trial of the Eastern Cooperative Oncology Group. Cancer: Interdisciplinary International Journal of the American Cancer Society, 100(8), 1639–1645.

    Article  CAS  Google Scholar 

  • Eissa, A. M., Smith, M. J., Kubilis, A., Mosely, J. A., & Cameron, N. R. (2013). Polymersome-forming amphiphilic glycosylated polymers: Synthesis and characterization. Journal of Polymer Science Part A: Polymer Chemistry, 51(24), 5184–5193.

    Article  CAS  Google Scholar 

  • Etrych, T., Jelı́nková, M., Řı́hová, B., & Ulbrich, K. (2001). New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. Journal of Controlled Release, 73(1), 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Etrych, T., Chytil, P., Mrkvan, T., Šírová, M., Říhová, B., & Ulbrich, K. (2008). Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. Journal of Controlled Release, 132(3), 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Li, D., Han, J., Zhuang, X., & Ding, J. (2017). Schiff base bond-linked polysaccharide–doxorubicin conjugate for upregulated cancer therapy. Materials Science and Engineering: C, 76, 1121–1128.

    Article  CAS  Google Scholar 

  • Fraguas-Sánchez, A., Martín-Sabroso, C., Fernández-Carballido, A., & Torres-Suárez, A. (2019). Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemotherapy and Pharmacology, 1–18.

    Google Scholar 

  • Fujiwara, Y., Mukai, H., Saeki, T., Ro, J., Lin, Y.-C., Nagai, S. E., Lee, K. S., Watanabe, J., Ohtani, S., & Kim, S. B. (2019). A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. British Journal of Cancer, 120(5), 475–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, C. W., & Feng, S.-S. (2010). Transferrin-conjugated nanoparticles of poly (lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials, 31(30), 7748–7757.

    Article  CAS  PubMed  Google Scholar 

  • Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: Preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1–3), 169–188.

    Article  CAS  PubMed  Google Scholar 

  • Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D. E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George, A., Shah, P. A., & Shrivastav, P. S. (2019). Natural biodegradable polymers based nano-formulations for drug delivery: A review. International Journal of Pharmaceutics, 561, 244–264.

    Article  CAS  PubMed  Google Scholar 

  • Ghamkhari, A., Ghorbani, M., & Aghbolaghi, S. (2018). A perfect stimuli-responsive magnetic nanocomposite for intracellular delivery of doxorubicin. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S911–S921.

    Article  CAS  PubMed  Google Scholar 

  • Guan, H., McGuire, M. J., Li, S., & Brown, K. C. (2008). Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of αvβ6-positive cancers. Bioconjugate Chemistry, 19(9), 1813–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, X.-L., Kang, X.-X., Wang, Y.-Q., Zhang, X.-J., Li, C.-J., Liu, Y., & Du, L.-B. (2019). Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomaterialia, 84, 367–377.

    Article  CAS  PubMed  Google Scholar 

  • Haghighi, A. H., Faghih, Z., Khorasani, M. T., & Farjadian, F. (2019). Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. Journal of Magnetism and Magnetic Materials, 490, 165479.

    Article  CAS  Google Scholar 

  • He, H., Liu, L., Morin, E. E., Liu, M., & Schwendeman, A. (2019). Survey of clinical translation of cancer nanomedicines—Lessons learned from successes and failures. Accounts of Chemical Research, 52(9), 2445–2461.

    Article  CAS  PubMed  Google Scholar 

  • Heidel, J. D., & Davis, M. E. (2011). Clinical developments in nanotechnology for cancer therapy. Pharmaceutical Research, 28(2), 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, C., & Exner, A. A. (2017). Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems. Future Science.

    Book  Google Scholar 

  • Hong, M., Zhu, S., Jiang, Y., Tang, G., & Pei, Y. (2009). Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. Journal of Controlled Release, 133(2), 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Hosseinifar, T., Sheybani, S., Abdouss, M., Hassani Najafabadi, S. A., & Shafiee Ardestani, M. (2018). Pressure responsive nanogel base on alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. Journal of Biomedical Materials Research Part A, 106(2), 349–359.

    Article  CAS  PubMed  Google Scholar 

  • Husseini, G. A., Abdel-Jabbar, N. M., Mjalli, F. S., & Pitt, W. G. (2011). Optimizing the use of ultrasound to deliver chemotherapeutic agents to cancer cells from polymeric micelles. Journal of the Franklin Institute, 348(7), 1276–1284.

    Article  Google Scholar 

  • **, Q., Mitschang, F., & Agarwal, S. (2011). Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules, 12(10), 3684–3691.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, A. P., Cortez, C., Angelatos, A. S., & Caruso, F. (2006). Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science, 11(4), 203–209.

    Article  CAS  Google Scholar 

  • Jung, K. H., Park, Y. H., Im, S.-A., Sohn, J., Lee, K.-S., Chae, Y. S., Lee, K. H., Kim, J. H., Im, Y.-H., & Kim, J.-Y. (2017). A phase II, multicenter, randomized trial of eribulin plus gemcitabine (EG) vs. paclitaxel plus gemcitabine (PG) in patients with HER2-negative metastatic breast cancer (MBC) as first-line chemotherapy (KCSG BR13-11, NCT02263495). American Society of Clinical Oncology.

    Book  Google Scholar 

  • Kang, L., Fan, B., Sun, P., Huang, W., **, M., Wang, Q., & Gao, Z. (2016). An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome. Acta Biomaterialia, 44, 341–354.

    Article  CAS  PubMed  Google Scholar 

  • Kannan, R., Nance, E., Kannan, S., & Tomalia, D. A. (2014). Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. Journal of Internal Medicine, 276(6), 579–617.

    Article  CAS  PubMed  Google Scholar 

  • Kern, H. B., Srinivasan, S., Convertine, A. J., Hockenbery, D., Press, O. W., & Stayton, P. S. (2017). Enzyme-cleavable polymeric micelles for the intracellular delivery of proapoptotic peptides. Molecular Pharmaceutics, 14(5), 1450–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. M., Madni, A., Filipczak, N., Pan, J., Rehman, M., Rai, N., Attia, S. A., & Torchilin, V. P. (2020). Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomedicine: Nanotechnology, Biology and Medicine, 28, 102228.

    Article  CAS  Google Scholar 

  • Killoran, M., & Moyer, A. (2006). Surgical treatment preferences in Chinese-American women with early-stage breast cancer. Psycho-Oncology: Journal of the Psychological, Social and Behavioral Dimensions of Cancer, 15(11), 969–984.

    Article  Google Scholar 

  • Kim, D., Lee, E. S., Oh, K. T., Gao, Z. G., & Bae, Y. H. (2008). Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 4(11), 2043–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M., Kim, D.-M., Kim, K.-S., Jung, W., & Kim, D.-E. (2018). Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules, 23(4), 830.

    Article  PubMed Central  CAS  Google Scholar 

  • Kirtane, A. R., Narayan, P., Liu, G., & Panyam, J. (2017). Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. Journal of Pharmaceutical Investigation, 47(1), 65–73.

    Article  CAS  Google Scholar 

  • Kobayashi, H., & Brechbiel, M. W. (2005). Nano-sized MRI contrast agents with dendrimer cores. Advanced Drug Delivery Reviews, 57(15), 2271–2286.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, P., Haldar, M. K., You, S., Choi, Y., & Mallik, S. (2016). Hypoxia-responsive polymersomes for drug delivery to hypoxic pancreatic cancer cells. Biomacromolecules, 17(8), 2507–2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummar, S., Chen, H. X., Wright, J., Holbeck, S., Millin, M. D., Tomaszewski, J., Zweibel, J., Collins, J., & Doroshow, J. H. (2010). Utilizing targeted cancer therapeutic agents in combination: Novel approaches and urgent requirements. Nature Reviews Drug Discovery, 9(11), 843–856.

    Article  CAS  PubMed  Google Scholar 

  • Langer, C. J. (2004). CT-2103: A novel macromolecular taxane with potential advantages compared with conventional taxanes. Clinical Lung Cancer, 6, S85–S88.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. C., MacKay, J. A., Fréchet, J. M., & Szoka, F. C. (2005). Designing dendrimers for biological applications. Nature Biotechnology, 23(12), 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Bae, K. H., Lee, Y., Lee, S. H., Ahn, C. H., & Park, T. G. (2010). Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals for magnetically triggered delivery of siRNA. Macromolecular Bioscience, 10(3), 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. J., Jeong, Y.-I., Park, H.-K., Kang, D. H., Oh, J.-S., Lee, S.-G., & Lee, H. C. (2015). Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. International Journal of Nanomedicine, 10, 5489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C.-J., Kuan, C.-H., Wang, L.-W., Wu, H.-C., Chen, Y., Chang, C.-W., Huang, R.-Y., & Wang, T.-W. (2016). Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials, 90, 12–26.

    Article  CAS  PubMed  Google Scholar 

  • Linhardt, A. (2015). Synthesis and characterisation of polyphosphazenes with controlled drug release. Dissertation, University of Maryland

    Google Scholar 

  • Liu, B., Yang, M., Li, R., Ding, Y., Qian, X., Yu, L., & Jiang, X. (2008). The antitumor effect of novel docetaxel-loaded thermosensitive micelles. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G.-Y., Chen, C.-J., & Ji, J. (2012). Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter, 8(34), 8811–8821.

    Article  CAS  Google Scholar 

  • Liu, H.-M., Zhang, Y.-F., **e, Y.-D., Cai, Y.-F., Li, B.-Y., Li, W., Zeng, L.-Y., Li, Y.-L., & Yu, R.-T. (2017). Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. International Journal of Nanomedicine, 12, 1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luong, D., Kesharwani, P., Alsaab, H. O., Sau, S., Padhye, S., Sarkar, F. H., & Iyer, A. K. (2017). Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids and Surfaces B: Biointerfaces, 157, 490–502.

    Article  CAS  PubMed  Google Scholar 

  • Madamsetty, V. S., Mukherjee, A., & Mukherjee, S. (2019). Recent trends of the bio-inspired nanoparticles in cancer theranostics. Frontiers in Pharmacology, 10, 1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda, H. (2013). The link between infection and cancer: Tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Science, 104(7), 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoodzadeh, F., Abbasian, M., Jaymand, M., Salehi, R., & Bagherzadeh-Khajehmarjan, E. (2018). A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors. Materials Science and Engineering: C, 93, 880–889.

    Article  CAS  Google Scholar 

  • Maiti, P. K., Çaǧın, T., Wang, G., & Goddard, W. A. (2004). Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 37(16), 6236–6254.

    Article  CAS  Google Scholar 

  • Markman, B., De Souza, P. L., Dees, E. C., Gangadhar, T. C., Cooper, A., Roohullah, A., Boolell, V., Zamboni, W., Murphy, C., & Senderowicz, A. M. (2016). A phase 1 study of CRLX301, a novel nanoparticle-drug conjugate (NDC) containing docetaxel (DOC), in patients with refractory solid tumors. American Society of Clinical Oncology.

    Book  Google Scholar 

  • Masarudin, M. J., Cutts, S. M., Evison, B. J., Phillips, D. R., & Pigram, P. J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, Science and Applications, 8, 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Okusaka, T., Ueno, H., & Ikeda, M. (2004). Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer, 91(10), 1775–1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina, S. H., & El-Sayed, M. E. (2009). Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews, 109(7), 3141–3157.

    Article  CAS  PubMed  Google Scholar 

  • Minami, C. A., King, T. A., & Mittendorf, E. A. (2020). Patient preferences for locoregional therapy in early-stage breast cancer. Breast Cancer Research and Treatment, 1–19.

    Google Scholar 

  • Mohapatra, S., Ranjan, S., Dasgupta, N., Kumar, R., & Thomas, S. (2018). Nanocarriers for drug delivery: Nanoscience and nanotechnology in drug delivery. Elsevier.

    Google Scholar 

  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Nasef, A. M., Gardouh, A. R., & Ghorab, M. M. (2015). Polymeric nanoparticles: influence of polymer, surfactant and composition of manufacturing vehicle on particle size. World Journal of Pharmaceutical Sciences, 3, 2308–2322.

    CAS  Google Scholar 

  • Nelemans, L. C., & Gurevich, L. (2020). Drug delivery with polymeric nanocarriers—cellular uptake mechanisms. Materials, 13(2), 366.

    Article  CAS  PubMed Central  Google Scholar 

  • Ngoune, R., Peters, A., von Elverfeldt, D., Winkler, K., & Pütz, G. (2016). Accumulating nanoparticles by EPR: A route of no return. Journal of Controlled Release, 238, 58–70.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 42(3), 1147–1235.

    Article  CAS  PubMed  Google Scholar 

  • Noriega-Luna, B., Godínez, L. A., Rodríguez, F. J., Rodríguez, A., Zaldívar-Lelo de Larrea, G., Sosa-Ferreyra, C., Mercado-Curiel, R., Manríquez, J., & Bustos, E. (2014). Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. Journal of Nanomaterials, 2014, 507273.

    Article  CAS  Google Scholar 

  • Pan, J., Li, P.-J., Wang, Y., Chang, L., Wan, D., & Wang, H. (2018). Active targeted drug delivery of MMP-2 sensitive polymeric nanoparticles. Chemical Communications, 54(79), 11092–11095.

    Article  CAS  PubMed  Google Scholar 

  • Pang, Z., Gao, H., Yu, Y., Guo, L., Chen, J., Pan, S., Ren, J., Wen, Z., & Jiang, X. (2011). Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjugate Chemistry, 22(6), 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Shim, J., Jung, H. A., Sun, J.-M., Lee, S.-H., Park, W.-Y., Ahn, J. S., Ahn, M.-J., & Park, K. (2019). Biomarker driven phase II umbrella trial study of AZD1775, AZD2014, AZD2811 monotherapy in relapsed small cell lung cancer. American Society of Clinical Oncology.

    Book  Google Scholar 

  • Parmar, M. B., Sundaram, D. N. M., Remant Bahadur, K. C., Maranchuk, R., Aliabadi, H. M., Hugh, J. C., Löbenberg, R., & Uludağ, H. (2018). Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells. Acta Biomaterialia, 66, 294–309.

    Article  CAS  PubMed  Google Scholar 

  • Pawar, P. V., Gohil, S. V., Jain, J. P., & Kumar, N. (2013). Functionalized polymersomes for biomedical applications. Polymer Chemistry, 4(11), 3160–3176.

    Article  CAS  Google Scholar 

  • Peng, X.-H., Wang, Y., Huang, D., Wang, Y., Shin, H. J., Chen, Z., Spewak, M. B., Mao, H., Wang, X., & Wang, Y. (2011). Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles. ACS Nano, 5(12), 9480–9493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, J. L., Herlihy, K. P., Napier, M. E., & DeSimone, J. M. (2011). PRINT: A novel platform toward shape and size specific nanoparticle theranostics. Accounts of Chemical Research, 44(10), 990–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phase I. (2015). NCI alliance for nanotechnology in cancer.

    Google Scholar 

  • Piedmonte, D. M., & Treuheit, M. J. (2008). Formulation of Neulasta®(pegfilgrastim). Advanced Drug Delivery Reviews, 60(1), 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Poursharifi, M., Wlodarczyk, M. T., & Mieszawska, A. J. (2020). How does access to this work benefit you? Let us know! The FASEB Journal, 34(S1), 1.

    Article  Google Scholar 

  • Pushpalatha, R., Selvamuthukumar, S., & Kilimozhi, D. (2017). Nanocarrier mediated combination drug delivery for chemotherapy–a review. Journal of Drug Delivery Science and Technology, 39, 362–371.

    Article  CAS  Google Scholar 

  • Radhakrishnan, K., Tripathy, J., Gnanadhas, D. P., Chakravortty, D., & Raichur, A. M. (2014). Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Advances, 4(86), 45961–45968.

    Article  CAS  Google Scholar 

  • Rideau, E., Dimova, R., Schwille, P., Wurm, F. R., & Landfester, K. (2018). Liposomes and polymersomes: A comparative review towards cell mimicking. Chemical Society Reviews, 47(23), 8572–8610.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, K., Song, G., & Ouyang, G. (2009). Role of hypoxia in the hallmarks of human cancer. Journal of Cellular Biochemistry, 107(6), 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  • Sah, E., & Sah, H. (2015). Recent trends in preparation of poly (lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. Journal of Nanomaterials, 2015, 794601.

    Article  CAS  Google Scholar 

  • Saravanakumar, K., Hu, X., Ali, D. M., & Wang, M.-H. (2019). Emerging strategies in stimuli-responsive nanocarriers as the drug delivery system for enhanced cancer therapy. Current Pharmaceutical Design, 25(24), 2609–2625.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, K. T. (2020). Novel therapeutic approaches to overcome acquired resistance to enzalutamide in patients with advanced prostate cancer. Utrecht University.

    Google Scholar 

  • Shahriari, M., Taghdisi, S. M., Abnous, K., Ramezani, M., & Alibolandi, M. (2019). Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. International Journal of Pharmaceutics, 572, 118835.

    Article  CAS  PubMed  Google Scholar 

  • Shi, M., Ho, K., Keating, A., & Shoichet, M. S. (2009). Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Advanced Functional Materials, 19(11), 1689–1696.

    Article  CAS  Google Scholar 

  • Shi, J., Liu, S., Yu, Y., He, C., Tan, L., & Shen, Y.-M. (2019). RGD peptide-decorated micelles assembled from polymer–paclitaxel conjugates towards gastric cancer therapy. Colloids and Surfaces B: Biointerfaces, 180, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, R., Singh, A., Pardhi, V., Kashyap, K., Dubey, S. K., Dandela, R., & Kesharwani, P. (2019). Dendrimer-based nanoparticulate delivery system for cancer therapy. In Polymeric nanoparticles as a promising tool for anti-cancer therapeutics (pp. 233–255). Elsevier.

    Chapter  Google Scholar 

  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30.

    Google Scholar 

  • Simone, E. A., Dziubla, T. D., & Muzykantov, V. R. (2008). Polymeric carriers: Role of geometry in drug delivery. Expert Opinion on Drug Delivery, 5(12), 1283–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, S., Rao, N. V., Ko, H., Shin, S., Jeon, J., Han, H. S., Thambi, T., Suh, Y. D., & Park, J. H. (2018). Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. International Journal of Biological Macromolecules, 110, 399–405.

    Article  CAS  PubMed  Google Scholar 

  • Song, N., Liu, W., Tu, Q., Liu, R., Zhang, Y., & Wang, J. (2011). Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids and Surfaces B: Biointerfaces, 87(2), 454–463.

    Article  CAS  PubMed  Google Scholar 

  • Suksiriworapong, J., Taresco, V., Ivanov, D. P., Styliari, I. D., Sakchaisri, K., Junyaprasert, V. B., & Garnett, M. C. (2018). Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly (glycerol adipate). Colloids and Surfaces B: Biointerfaces, 167, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Sun, P., Zhou, D., & Gan, Z. (2011). Novel reduction-sensitive micelles for triggered intracellular drug release. Journal of Controlled Release, 155(1), 96–103.

    Article  CAS  PubMed  Google Scholar 

  • Svenson, S. (2012). Clinical translation of nanomedicines. Current Opinion in Solid State and Materials Science, 16(6), 287–294.

    Article  CAS  Google Scholar 

  • Svenson, S. (2014). What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 6(2), 125–135.

    CAS  PubMed  Google Scholar 

  • Theerasilp, M., Chalermpanapun, P., Ponlamuangdee, K., Sukvanitvichai, D., & Nasongkla, N. (2017). Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Advances, 7(18), 11158–11169.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, G. K., Cherukula, K., Lee, H., Jeong, Y. Y., Park, I.-K., & Lee, J. Y. (2018). Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials, 180, 240–252.

    Article  CAS  PubMed  Google Scholar 

  • Tomalia, D. A., Christensen, J. B., & Boas, U. (2012). Dendrimers, dendrons, and dendritic polymers: Discovery, applications, and the future. Cambridge University Press.

    Book  Google Scholar 

  • Tortorella, S., & Karagiannis, T. C. (2014). The significance of transferrin receptors in oncology: The development of functional nano-based drug delivery systems. Current Drug Delivery, 11(4), 427–443.

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell, Z. L., Shen, Y., & Radosz, M. (2010). Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 35(9), 1128–1143.

    Article  CAS  Google Scholar 

  • Uchida, S., Kinoh, H., Ishii, T., Matsui, A., Tockary, T. A., Takeda, K. M., Uchida, H., Osada, K., Itaka, K., & Kataoka, K. (2016). Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials, 82, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Vacchelli, E., Galluzzi, L., Fridman, W. H., Galon, J., Sautès-Fridman, C., Tartour, E., & Kroemer, G. (2012). Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology, 1(2), 179–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela-Oses, J. K., García, M. C., Feitosa, V. A., Pachioni-Vasconcelos, J. A., Gomes-Filho, S. M., Lourenço, F. R., Cerize, N. N., Bassères, D. S., & Rangel-Yagui, C. O. (2017). Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Materials Science and Engineering: C, 81, 327–333.

    Article  CAS  Google Scholar 

  • Van Eerden, R. A., Atrafi, F., vanHylckama Vlieg, M. A., Oomen-de Hoop, E., de Bruijn, P., Moelker, A., Lolkema, M. P., Rijcken, C. J., Hanssen, R., & Eskens, F. (2019). Comparison of intratumoral docetaxel exposure in cancer patients between nanoparticle entrapped docetaxel (CPC634) and conventional docetaxel (Cd): The CriTax study. Annals of Oncology, 30, v184.

    Article  Google Scholar 

  • Vetvicka, D., Hruby, M., Hovorka, O., Etrych, T., Vetrik, M., Kovar, L., Kovar, M., Ulbrich, K., & Rihova, B. (2009). Biological evaluation of polymeric micelles with covalently bound doxorubicin. Bioconjugate Chemistry, 20(11), 2090–2097.

    Article  CAS  PubMed  Google Scholar 

  • Vishnoi, K., Viswakarma, N., Rana, A., & Rana, B. (2020). Transcription factors in cancer development and therapy. Cancers, 12(8), 2296.

    Article  CAS  PubMed Central  Google Scholar 

  • Voss, M. H., Coates, A., Garmey, E. G., Haas, N. B., Hutson, T., Keefe, S. M., Motzer, R., Piscitelli, A., Vogelzang, N. J., & Figlin, R. A. (2015). Randomized phase 2 study to assess the safety and efficacy of CRLX101 in combination with bevacizumab in patients (pts.) with metastatic renal cell carcinoma (RCC) versus standard of care (SOC). American Society of Clinical Oncology.

    Book  Google Scholar 

  • Wang, J., Bai, J., & Al-Jamal, K. (2018). Applications of magnetic nanoparticles in multi-modal imaging. Theranostics and Image Guided Drug Delivery, 63, 53.

    Article  CAS  Google Scholar 

  • Wei, X., Luo, Q., Sun, L., Li, X., Zhu, H., Guan, P., Wu, M., Luo, K., & Gong, Q. (2016). Enzyme-and pH-sensitive branched polymer–doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy. ACS Applied Materials & Interfaces, 8(18), 11765–11778.

    Article  CAS  Google Scholar 

  • Wei, Y., Gu, X., Sun, Y., Meng, F., Storm, G., & Zhong, Z. (2020). Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. Journal of Controlled Release, 319, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Wen, X., Wu, Q.-P., Lu, Y., Fan, Z., Charnsangavej, C., Wallace, S., Chow, D., & Li, C. (2001). Poly (ethylene glycol)-conjugated anti-EGF receptor antibody C225 with radiometal chelator attached to the termini of polymer chains. Bioconjugate Chemistry, 12(4), 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Wex, J., Sidhu, M., Odeyemi, I., Abou-Setta, A. M., Retsa, P., & Tombal, B. (2013). Leuprolide acetate 1-, 3-and 6-monthly depot formulations in androgen deprivation therapy for prostate cancer in nine European countries: Evidence review and economic evaluation. ClinicoEconomics and Outcomes Research: CEOR, 5, 257.

    Article  Google Scholar 

  • Wu, P., Jia, Y., Qu, F., Sun, Y., Wang, P., Zhang, K., Xu, C., Liu, Q., & Wang, X. (2017). Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action. ACS Applied Materials & Interfaces, 9(31), 25706–25716.

    Article  CAS  Google Scholar 

  • Wu, R., Zhang, Z., Wang, B., Chen, G., Zhang, Y., Deng, H., Tang, Z., Mao, J., & Wang, L. (2020). Combination chemotherapy of lung cancer–co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid–polymer hybrid nanoparticles. Drug Design, Development and Therapy, 14, 2249–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a, J., Du, Y., Huang, L., Chaurasiya, B., Tu, J., Webster, T. J., & Sun, C. (2018). Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 713–723.

    Article  CAS  Google Scholar 

  • Xu, Q., Liu, Y., Su, S., Li, W., Chen, C., & Wu, Y. (2012). Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials, 33(5), 1627–1639.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zhao, Q., **, Y., & Qiu, L. (2014). High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), 349–358.

    Article  CAS  Google Scholar 

  • Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: From targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Q., Guo, X., Huang, X., Meng, X., Liu, F., Dai, P., Wang, Z., & Zhao, Y. (2019). Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Applied Materials & Interfaces, 11(27), 24377–24385.

    Article  CAS  Google Scholar 

  • Yang, H., Morris, J. J., & Lopina, S. T. (2004). Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. Journal of Colloid and Interface Science, 273(1), 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Li, Z., Wang, N., Li, L., Song, L., He, T., Sun, L., Wang, Z., Wu, Q., & Luo, N. (2015a). Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Scientific Reports, 5, 10322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Cai, W., Xu, L., Lv, X., Qiao, Y., Li, P., Wu, H., Yang, Y., Zhang, L., & Duan, Y. (2015b). Nanobubble–Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials, 37, 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Ye, W. L., Du JB, N. R., Song, Y. F., Mei, Q. B., Zhao, M. G., & Zhou, S. Y. (2014). Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One, 9(5), e97358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildiz, M., Prud’homme, R. K., Robb, I., & Adamson, D. (2007). Formation and characterization of polymersomes made by a solvent injection method. Polymers for Advanced Technologies, 18(6), 427–432.

    Article  CAS  Google Scholar 

  • Yin, T., Wang, P., Li, J., Wang, Y., Zheng, B., Zheng, R., Cheng, D., & Shuai, X. (2014). Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials, 35(22), 5932–5943.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, H. S., & Park, T. G. (2004). Folate receptor targeted biodegradable polymeric doxorubicin micelles. Journal of Controlled Release, 96(2), 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Yousefpour, P., Atyabi, F., Vasheghani-Farahani, E., Movahedi, A.-A. M., & Dinarvand, R. (2011). Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab. International Journal of Nanomedicine, 6, 1977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarepour, A., Zarrabi, A., & Larsen, K. L. (2019). Fabricating Β-cyclodextrin based pH-responsive nanotheranostics as a programmable polymeric nanocapsule for simultaneous diagnosis and therapy. International Journal of Nanomedicine, 14, 7017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, Y., Zhou, X., Jia, L., Ma, C., Song, R., Deng, Y., Hu, X., & Sun, W. (2017). Acetal-linked paclitaxel polymeric prodrug based on functionalized mPEG-PCL diblock polymer for pH-triggered drug delivery. Polymers, 9(12), 698.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang, C., Wang, W., Liu, T., Wu, Y., Guo, H., Wang, P., Tian, Q., Wang, Y., & Yuan, Z. (2012). Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 33(7), 2187–2196.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Pan, D., Li, J., Hu, J., Bains, A., Guys, N., Zhu, H., Li, X., Luo, K., & Gong, Q. (2017). Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomaterialia, 55, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Zhu, J., Zheng, Y., Guo, R., Wang, S., Mignani, S., Caminade, A.-M., Majoral, J.-P., & Shi, X. (2018). Doxorubicin-conjugated PAMAM dendrimers for pH-responsive drug release and folic acid-targeted cancer therapy. Pharmaceutics, 10(3), 162.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang, X., Kang, Y., Liu, G.-T., Li, D.-D., Zhang, J.-Y., Gu, Z.-P., & Wu, J. (2019). Poly (cystine–PCL) based pH/redox dual-responsive nanocarriers for enhanced tumor therapy. Biomaterials Science, 7(5), 1962–1972.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Y., Meng, F., Deng, C., & Zhong, Z. (2014). Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 15(6), 1955–1969.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., Zhang, L., Yang, T., & Wu, H. (2018). Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International Journal of Nanomedicine, 13, 2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Guo, L., Shi, D., Duan, S., & Li, J. (2019). Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Research Letters, 14(1), 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, S., Hong, M., Zhang, L., Tang, G., Jiang, Y., & Pei, Y. (2010). PEGylated PAMAM dendrimer-doxorubicin conjugates: In vitro evaluation and in vivo tumor accumulation. Pharmaceutical Research, 27(1), 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Yu, H., Liu, S.-Y., **ao, X.-S., Dong, W.-H., Chen, Y.-N., Xu, W., & Zhu, T. (2015). Prognostic value of tissue inhibitor of metalloproteinase-2 expression in patients with non–small cell lung cancer: A systematic review and meta-analysis. PLoS One, 10(4), e0124230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premlata Ambre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, C., Uthale, A., Teni, T., Ambre, P., Coutinho, E. (2021). Emerging Polymer-Based Nanomaterials for Cancer Therapeutics. In: Saravanan, M., Barabadi, H. (eds) Cancer Nanotheranostics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-74330-7_7

Download citation

Publish with us

Policies and ethics

Navigation