Robotic Microsurgical Training

  • Chapter
  • First Online:
Robotics in Plastic and Reconstructive Surgery

Abstract

Microsurgery is a skill-demanding surgical technique performed with an operating microscope that exercises appreciation of delicate tissues, self-control and patience, as well as attention to detail. Robotic assistance in microsurgery could improve human precision and dexterity to enhance clinical results.

Robotic microsurgery training combines techniques from conventional microsurgery but also principles of robotic and even endoscopic surgery that also have to be taught for some robotic platforms. It must be practiced first in a simulated environment before applying it in the clinical setting.

The purpose of this chapter is to describe robotic microsurgery training methods, validate skill assessment instruments, and to outline the learning curve for robotic microsurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selber JC, Robb G, Serletti JM, Weinstein G, Weber R, Holsinger FC. Transoral robotic free flap reconstruction of oropharyngeal defects: a preclinical investigation. Plast Reconstr Surg. 2010;125(3):896–900.

    Article  CAS  PubMed  Google Scholar 

  2. Dobbs TD, Cundy O, Samarendra H, Khan K, Whitaker IS. A systematic review of the role of robotics in plastic and reconstructive surgery-from inception to the future. Front Surg. 2017;4:66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Selber JC, Sarhane KA, Ibrahim AE, Holsinger FC. Transoral robotic reconstructive surgery. Semin Plast Surg. 2014;28(1):35–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, et al. Dexterity enhancement with robotic surgery. Surg Endosc. 2004;18(5):790–5.

    Article  CAS  PubMed  Google Scholar 

  5. Parekattil SJ, Brahmbhatt JV. Robotic approaches for male infertility and chronic orchialgia microsurgery. Curr Opin Urol. 2011;21(6):493–9.

    Article  PubMed  Google Scholar 

  6. van Mulken TJM, Boymans C, Schols RM, Cau R, Schoenmakers FBF, Hoekstra LT, et al. Preclinical experience using a new robotic system created for microsurgery. Plast Reconstr Surg. 2018;142(5):1377–8.

    Article  CAS  Google Scholar 

  7. Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg. 2014;28(1):20–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Facca S, Hendriks S, Mantovani G, Selber JC, Liverneaux P. Robot-assisted surgery of the shoulder girdle and brachial plexus. Semin Plast Surg. 2014;28(1):39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selber JC, Alrasheed T. Robotic microsurgical training and evaluation. Semin Plast Surg. 2014;28(1):5–10. https://doi.org/10.1055/s-0034-1368161.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, et al. Develo** a comprehensive, proficiency-based training program for robotic surgery. Surgery. 2012;152(3):477–88.

    Article  PubMed  Google Scholar 

  11. Leung CC, Ghanem AM, Tos P, Ionac M, Froschauer S, Myers SR. Towards a global understanding and standardisation of education and training in microsurgery. Arch Plast Surg. 2013;40(4):304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghanem A, Kearns M, Ballestin A, Froschauer S, Akelina Y, Shurey S, et al. International Microsurgery Simulation Society (IMSS) consensus statement on the minimum standards for a basic microsurgery course, requirements for a microsurgical anastomosis global rating scale and minimum thresholds for training. Injury. 2020;51(Suppl 4):S126–30.

    Article  PubMed  Google Scholar 

  13. Shurey S, Akelina Y, Legagneux J, Malzone G, Jiga L, Ghanem AM. The rat model in microsurgery education: classical exercises and new horizons. Arch Plast Surg. [Review]. 2014;41(3):201–8.

    Article  Google Scholar 

  14. Pafitanis G, Serrar Y, Raveendran M, Ghanem A, Myers S. The chicken thigh adductor profundus free muscle flap: a novel validated non-living microsurgery simulation training model. Arch Plast Surg. 2017;44(4):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ballestin A, Casado JG, Abellan E, Vela FJ, Campos JL, Martinez-Chacon G, et al. A pre-clinical Rat Model for the study of ischemia-reperfusion injury in reconstructive microsurgery. J Vis Exp. [Video-Audio Media]. 2019;(153) https://doi.org/10.3791/60292.

  16. Uson J, Calles MC. Design of a new suture practice card for microsurgical training. Microsurgery. [Evaluation Studies]. 2002;22(8):324–8.

    Article  Google Scholar 

  17. Ghanem AM, Hachach-Haram N, Leung CC, Myers SR. A systematic review of evidence for education and training interventions in microsurgery. Arch Plast Surg. 2013;40(4):312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liverneaux PA, Hendriks S, Selber JC, Parekattil SJ. Robotically assisted microsurgery: development of basic skills course. Arch Plast Surg. 2013;40(4):320–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karamanoukian RL, Bui T, McConnell MP, Evans GR, Karamanoukian HL. Transfer of training in robotic-assisted microvascular surgery. Ann Plast Surg. 2006;57(6):662–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gudeloglu A, Brahmbhatt JV, Parekattil SJ. Robotic-assisted microsurgery for an elective microsurgical practice. Semin Plast Surg. 2014;28(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee JY, Mattar T, Parisi TJ, Carlsen BT, Bishop AT, Shin AY. Learning curve of robotic-assisted microvascular anastomosis in the rat. J Reconstr Microsurg. 2012;28(7):451–6.

    Article  PubMed  Google Scholar 

  22. Singh M, Ziolkowski N, Ramachandran S, Myers SR, Ghanem AM. Development of a five-day basic microsurgery simulation training course: a cost analysis. Arch Plast Surg. 2014;41(3):213–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kearns MC, Baker J, Myers S, Ghanem A. Towards standardization of training and practice of reconstructive microsurgery: an evidence-based recommendation for anastomosis thrombosis prophylaxis. Eur J Plast Surg. 2018;41(4):379–86.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Balasundaram I, Aggarwal R, Darzi LA. Development of a training curriculum for microsurgery. Br J Oral Maxillofac Surg. 2010;48(8):598–606.

    Article  PubMed  Google Scholar 

  25. Atkins JL, Kalu PU, Lannon DA, Green CJ, Butler PE. Training in microsurgical skills: does course-based learning deliver? Microsurgery. [Evaluation Studies]. 2005;25(6):481–5.

    Article  Google Scholar 

  26. Schaverien MV, Butler CE, Suami H, Garvey PB, Liu J, Selber JC. Interview scores correlate with fellow microsurgical skill and performance. J Reconstr Microsurg. 2018;34(3):211–7.

    Article  PubMed  Google Scholar 

  27. Ramachandran S, Ong YS, Chin AY, Song IC, Ogden B, Tan BK. Stepwise training for reconstructive microsurgery: the journey to becoming a confident microsurgeon in Singapore. Arch Plast Surg. 2014;41(3):209–12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ko JW, Lorzano A, Mirarchi AJ. Effectiveness of a microvascular surgery training curriculum for orthopaedic surgery residents. J Bone Joint Surg Am. 2015;97(11):950–5.

    Article  PubMed  Google Scholar 

  29. Komatsu S, Yamada K, Yamashita S, Sugiyama N, Tokuyama E, Matsumoto K, et al. Evaluation of the microvascular research center training program for assessing microsurgical skills in trainee surgeons. Arch Plast Surg. 2013;40(3):214–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lascar I, Totir D, Cinca A, Cortan S, Stefanescu A, Bratianu R, et al. Training program and learning curve in experimental microsurgery during the residency in plastic surgery. Microsurgery. 2007;27(4):263–7.

    Article  PubMed  Google Scholar 

  31. Pafitanis G, Narushima M, Yamamoto T, Raveendran M, Veljanoski D, Ghanem AM, et al. Evolution of an evidence-based supermicrosurgery simulation training curriculum: a systematic review. J Plast Reconstr Aesthet Surg. 2018;71(7):976–88.

    Article  PubMed  Google Scholar 

  32. Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. Laboratory based training in urological microsurgery with bench model simulators: a randomized controlled trial evaluating the durability of technical skill. J Urol. 2004;172(1):378–81.

    Article  PubMed  Google Scholar 

  33. Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg. 2004;240(2):374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chan W, Niranjan N, Ramakrishnan V. Structured assessment of microsurgery skills in the clinical setting. J Plast Reconstr Aesthet Surg. 2010;63(8):1329–34.

    Article  PubMed  Google Scholar 

  35. Ramachandran S, Ghanem AM, Myers SR. Assessment of microsurgery competency-where are we now? Microsurgery. 2013;33(5):406–15.

    Article  PubMed  Google Scholar 

  36. Alrasheed T, Liu J, Hanasono MM, Butler CE, Selber JC. Robotic microsurgery: validating an assessment tool and plotting the learning curve. Plast Reconstr Surg. 2014;134(4):794–803.

    Article  CAS  PubMed  Google Scholar 

  37. Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. Validation of novel and objective measures of microsurgical skill: hand-motion analysis and stereoscopic visual acuity. Microsurgery. [Research Support, Non-U.S. Gov’t]. 2003;23(4):317–22.

    Google Scholar 

  38. Satterwhite T, Son J, Carey J, Echo A, Spurling T, Paro J, et al. The Stanford Microsurgery and Resident Training (SMaRT) scale: validation of an on-line global rating scale for technical assessment. Ann Plast Surg. 2014;72(Suppl 1):S84–8.

    Article  CAS  PubMed  Google Scholar 

  39. McGoldrick RB, Davis CR, Paro J, Hui K, Nguyen D, Lee GK. Motion analysis for microsurgical training: objective measures of dexterity, economy of movement, and ability. Plast Reconstr Surg. 2015;136(2):231e–40e.

    Article  CAS  PubMed  Google Scholar 

  40. Nayar SK, Musto L, Fernandes R, Bharathan R. Validation of a virtual reality laparoscopic appendicectomy simulator: a novel process using cognitive task analysis. Ir J Med Sci. 2019;188:963–71.

    Article  PubMed  Google Scholar 

  41. Whitehurst SV, Lockrow EG, Lendvay TS, Propst AM, Dunlow SG, Rosemeyer CJ, et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model). J Minim Invasive Gynecol. 2015;22(3):483–8.

    Article  PubMed  Google Scholar 

  42. MacCraith E, Forde JC, Davis NF. Robotic simulation training for urological trainees: a comprehensive review on cost, merits and challenges. J Robot Surg. 2019;13(3):371–7.

    Article  PubMed  Google Scholar 

  43. Ilie VG, Ilie VI, Dobreanu C, Ghetu N, Luchian S, Pieptu D. Training of microsurgical skills on nonliving models. Microsurgery. [Research Support, Non-U.S. Gov’t]. 2008;28(7):571–7.

    Google Scholar 

  44. Chan WY, Matteucci P, Southern SJ. Validation of microsurgical models in microsurgery training and competence: a review. Microsurgery. [Review]. 2007;27(5):494–9.

    Article  Google Scholar 

  45. Shurey S, Akelina Y, Legagneux J, Malzone G, Jiga L, Ghanem AM. The rat model in microsurgery education: classical exercises and new horizons. Arch Plast Surg. 2014;41(3):201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brahmbhatt JV, Gudeloglu A, Liverneaux P, Parekattil SJ. Robotic microsurgery optimization. Arch Plast Surg. 2014;41(3):225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Selber JC, Chang EI, Liu J, Suami H, Adelman DM, Garvey P, et al. Tracking the learning curve in microsurgical skill acquisition. Plast Reconstr Surg. 2012;130(4):550e–7e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Darzi A, Smith S, Taffinder N. Assessing operative skill. Needs to become more objective. BMJ. 1999;318(7188):887–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ballestín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, S., Alrasheed, T., Ballestín, A., Akelina, Y., Ghanem, A. (2021). Robotic Microsurgical Training. In: Selber, J.C. (eds) Robotics in Plastic and Reconstructive Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-74244-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74244-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74243-0

  • Online ISBN: 978-3-030-74244-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation