Part of the book series: Springer Handbooks ((SHB))

  • 3960 Accesses

Abstract

Collisions involving atoms or molecules in Rydberg orbitals are important in understanding a wide range of phenomena from the spectra of astrophysical objects, such as planetary nebulae and interstellar gas clouds, and industrial plasmas on Earth, to Bose-Einstein condensates and multi-qubit logic gates in quantum computing. This Chapter collects together many of the equations used to study theoretically the collisional properties of both charged and neutral particles with atoms and molecules in Rydberg states or orbitals, from thermal energies to ultra-cold temperatures, including the impulse approximation, binary encounter approximation and the Born approximation. Also covered are many new asymptotic methods and working formulae suitable for numerical computation, as well as models using scattering lengths and effective ranges. Readers interested in the basic quantum mechanical properties of Rydberg states may consult Chap. 15.

The theoretical techniques used to study Rydberg collisions complement and supplement the eigenfunction expansion approximations used for collisions with target atoms and molecules in their ground (n = 1) or first few excited states (n > 1), as discussed in Chap. 49. Direct application of eigenfunction expansion techniques to Rydberg collisions, wherein the target particle can be in a Rydberg orbital with principal quantum number in the range n ≥ 100, is prohibitively difficult due to the need to compute numerically and store wave functions with n3, or more, nodes. For n = 100 this amounts to ≈ 106 nodes for each of the wave functions represented in the eigenfunction expansion. Therefore, a variety of approximate scattering theories have been developed to deal specifically with the peculiarities of Rydberg collisions.

Experiments in the ultracold regime, via the use of lasers and magnetic traps, has allowed access to aspects of many-body physics using collisions of Rydberg atoms in a gas that were previously inaccessible in condensed matter and nuclear physics. For the second edition of the Handbook we have changed the title of the chapter to reflect the broader array of theories now being used, in particular, in ultra-cold collisions of Rydberg atoms and the study of their universal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Connerade, J.-P.: Highly Excited Atoms. Cambridge Univ., Cambridge (1998)

    Google Scholar 

  2. Lebedev, V.S., Beigman, I.L.: Physics of Highly Excited Atoms and Ions. Springer, New York (1998)

    Google Scholar 

  3. Jortner, J., Rosenblit, M.: Ultracold Large Finite Systems. In: Advances in Chemical Physiscs, vol. 132, pp. 247–343. Wiley, New York (2006)

    Google Scholar 

  4. Beigman, I.L., Lebedev, V.S.: Phys. Rep. 250, 95 (1995)

    ADS  Google Scholar 

  5. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin, Heidelberg (1957)

    MATH  Google Scholar 

  6. Khandelwal, G.S., Choi, B.H.: J. Phys. B 1, 1220 (1968)

    ADS  Google Scholar 

  7. Khandelwal, G.S., Fitchard, E.E.: J. Phys. B 2, 1118 (1969)

    ADS  Google Scholar 

  8. Khandelwal, G.S., Shelton, J.E.: J. Phys. B 4, 109 (1971)

    ADS  Google Scholar 

  9. Khandelwal, G.S., Choi, B.H.: J. Phys. B 2, 308 (1969)

    ADS  Google Scholar 

  10. Flannery, M.R., Vrinceanu, D., Ostrovsky, V.N.: J. Phys. B 38, 279–S293 (2005)

    ADS  Google Scholar 

  11. Zhang, J.Y., Yan, Z.C., Vrinceanu, D., Babb, J.F., Sadeghpour, H.R.: Phys. Rev. A 76, 012723 (2007)

    ADS  Google Scholar 

  12. Khuskivadze, A.A., Chibisov, M.I., Fabrikant, I.I.: Phys. Rev. A 66, 042709 (2002)

    ADS  Google Scholar 

  13. Santra, R., Greene, C.H.: Phys. Rev. A 67, 062713 (2003)

    ADS  Google Scholar 

  14. Clark, W., Greene, C.H., Miecznik, G.: Phys. Rev. A 53, 2248 (1995)

    ADS  Google Scholar 

  15. Gordon, W.: Ann. Phys. 2, 1031 (1929)

    Google Scholar 

  16. Davidkin, V.A., Zon, B.A.: Opt. Spectrosk. 51, 25 (1981)

    Google Scholar 

  17. Kolomeisky, E.B., Timmins, M.: Phys. Rev. A 72, 022721 (2005)

    ADS  Google Scholar 

  18. Bureeva, L.A.: Astron. Zh. 45, 1215 (1968)

    ADS  Google Scholar 

  19. Griem, H.: Astrophys. J. 148, 547 (1967)

    ADS  Google Scholar 

  20. Beterov, I.I., Ryabtsev, I.I., Tretyakov, D.B., Entin, V.M.: Phys. Rev. A 79, 052504 (2009)

    ADS  Google Scholar 

  21. Gounand, F.: France. J. Phys. 40, 457 (1979)

    Google Scholar 

  22. Pohl, T., Sadeghpour, H.R., Schmelcher, P.: Phys. Rep. 484, 181–229 (2009)

    ADS  Google Scholar 

  23. Flannery, M.R.: In: Stebbings, R.F., Dunning, F.B. (eds.) Rydberg States of Atoms and Molecules. Cambridge Univ., Cambridge (1983). Chap. 11

    Google Scholar 

  24. Burgess, A., Percival, I.C.: Advances in Atomic and Molecular Physics vol. 4. Academic Press, New York, p 109 (1968)

    Google Scholar 

  25. Percival, I.C.: In: Carson, T.R., Roberts, M.J. (eds.) Atoms and Molecules in Astrophysics. Academic Press, New York (1972)

    Google Scholar 

  26. Percival, I.C., Richards, D.: Advances in Atomic and Molecular Physics vol. 11. Academic Press, New York, p 1 (1975)

    Google Scholar 

  27. Matsuzawa, M.: J. Phys. B 8, 2114 (1975)

    ADS  Google Scholar 

  28. Gerjuoy, E.: Phys. Rev. 148, 54 (1966)

    ADS  Google Scholar 

  29. Garcia, J.D., Gerjuoy, E., Welker, J.E.: Phys. Rev. 165, 66 (1968)

    ADS  Google Scholar 

  30. Bates, D.R., Kingston, A.E.: Advances in Atomic and Molecular Physics vol. 6. Academic Press, New York, p 269 (1970)

    Google Scholar 

  31. Khan, J.M., Potter, D.L.: Phys. Rev. 133, A890 (1964)

    ADS  Google Scholar 

  32. Braaten, E., Hammer, H.-W.: Phys. Rep. 428, 259–390 (2006)

    ADS  MathSciNet  Google Scholar 

  33. Greene, C.H., Giannakeas, P., Perez-Rios, J.: Rev. Mod. Phys. 89, 035006 (2017)

    ADS  Google Scholar 

  34. Efimov, V.: Phys. Lett. 33B, 563 (1970)

    ADS  Google Scholar 

  35. Penḱov, F.M.: Phys. Rev. A 60, 3756 (1999)

    ADS  Google Scholar 

  36. Gross, E.P.: Ann. Phys. 4, 57 (1958)

    ADS  Google Scholar 

  37. Pitaevskii, L.P.: Sov. Phys. JETP 9, 830 (1959)

    MathSciNet  Google Scholar 

  38. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York, pp 488–499 (1971)

    Google Scholar 

  39. Fetter, A.L.: Vortices and Ions in Helium. The Physics of Liquid and Solid Helium, Part I. Wiley, New York, p 229 (1976). Chap. 3

    Google Scholar 

  40. Griffin, A.: Excitations in a Bose-Condensed Liquid. Cambridge Univ., Cambridge (1993)

    Google Scholar 

  41. Salomon, C., Shlyapnikov, G.V., Cugliandolo, L.F.: Many-Body Physics with Ultracold Gases. Oxford University Press, Oxford (2013)

    Google Scholar 

  42. Fournais, S., Solovej, J.P.: Ann. Math. 192, 893–976 (2020)

    MathSciNet  Google Scholar 

  43. Bluvstein, D., Levine, H., Semeghini, G., Wang, T.T., Ebadi, S., Kalinowski, M., Keesling, A., Maskara, N., Pichler, H., Greiner, M., Vuletić, V., Lukin, M.D.: Nature 604, 451–456 (2022)

    ADS  Google Scholar 

  44. Graham, T.M., Song, Y., Scott, J., Poole, C., Phuttitarn, L., Jooya, K., Eichler, P., Jiang, X., Marra, A., Grinkemeyer, B., Kwon, M., Ebert, M., Cherek, J., Lichtman, M.T., Gillette, M., Gilbert, J., Bowman, D., Ballance, T., Campbell, C., Dahl, E.D., Crawford, O., Blunt, N.S., Rogers, B., Noel, T., Saffman, M.: Nature 604, 457–462 (2022)

    ADS  Google Scholar 

  45. Saffman M., Walker, T.G., Mölmer, K.: Rev. Mod. Phys. 82, 2313–2363 (2010)

    ADS  Google Scholar 

  46. Byrnes, T., Llo-Okeke, E.O.: Quantum Atom Optics. Cambridge Univ., Cambridge

    MATH  Google Scholar 

  47. Lebedev, V.S., Marchenko, V.S.: Sov. Phys. JETP 61, 443 (1985)

    ADS  Google Scholar 

  48. Dewangan, D.P.: Phys. Rep. 511, 1–142 (2012)

    ADS  Google Scholar 

  49. Omont, A.: J. De Phys. 38, 1343 (1977)

    Google Scholar 

  50. Kaulakys, B.: J. Phys. B 17, 4485 (1984)

    ADS  Google Scholar 

  51. Pengelly, R.M., Seaton, M.J.: Mon. Not. R. Astron. Soc. 127, 165 (1964)

    ADS  Google Scholar 

  52. Percival, I.C.: In: Burke, P.G., Eissner, W.B., Hummer, D.G., Percival, I.C. (eds.) Atoms in Astrophysics. Plenum, New York (1983). Chap. 3

    Google Scholar 

  53. Guzmám, F., Badnell, N.R., Williams, R.J.R., van Hoof, P.A.M., Chatzikos, M., Ferland, G.J.: Mon. Not. R. Astron. Soc. 459, 3498–3504 (2016)

    ADS  Google Scholar 

  54. Guzmám, F., Badnell, N.R., Williams, R.J.R., van Hoof, P.A.M., Chatzikos, M., Ferland, G.J.: Mon. Not. R. Astron. Soc. 464, 312–320 (2017)

    ADS  Google Scholar 

  55. Vrinceanu, D., Onofrio, R., Sadeghpour, H.R.: Astrophys. J. 780, 2 (2014)

    ADS  Google Scholar 

  56. Vrinceanu, D., Flannery, M.R.: Phys. Rev. Lett. 85, 4880 (2000)

    ADS  Google Scholar 

  57. Vrinceanu, D., Flannery, M.R.: Phys. Rev. A 63, 032701 (2001)

    ADS  Google Scholar 

  58. Vrinceanu, D., Onofrio, R., Sadeghpour, H.R.: Astrophys. J. 747, 56 (2012)

    ADS  Google Scholar 

  59. Vrinceanu, D., Flannery, M.R.: J. Phys. B 33, L721 (2000)

    ADS  Google Scholar 

  60. Vrinceanu, D., Flannery, M.R.: J. Phys. B 34, L1 (2001)

    ADS  Google Scholar 

  61. Talman, J.D.: Special Functions: A Group Theoretic Approach. Benjamin, New York (1968)

    MATH  Google Scholar 

  62. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  63. Bateman, H.: Higher Transcendental Functions. In: Erdélyi, A. (ed.) Bateman Manuscript Project, vol. 2, p. 235. Robert E. Krieger, Malabar (1981). Chap. XI

    Google Scholar 

  64. Lebedev, V.S.: J. Phys. B 25, L131 (1992)

    ADS  Google Scholar 

  65. Lebedev, V.S.: Sov. Phys. JETP 76, 27 (1993)

    ADS  Google Scholar 

  66. Coleman, J.P.: In: McDaniel, E.W., McDowell, M.R.C. (eds.) Case Studies in Atomic Collision Physics, vol. I, North Holland, Amsterdam (1969)

    Google Scholar 

  67. Coleman, J.P.: J. Phys. B 1, 567 (1968)

    ADS  Google Scholar 

  68. Flannery, M.R.: Phys. Rev. A 22, 2408 (1980)

    ADS  Google Scholar 

  69. Goldberger, M.L., Watson, K.M.: Collision Theory. Wiley, New York (1964)

    MATH  Google Scholar 

  70. McDowell, M.R.C.: Proc. Phys. Soc. 89, 23 (1966)

    ADS  Google Scholar 

  71. Bates, D.R., Walker, J.C.G.: Planet. Spac. Sci. 14, 1367 (1966)

    ADS  Google Scholar 

  72. Bates, D.R., Walker, J.C.G.: Proc. Phys. Soc. 90, 333 (1967)

    ADS  Google Scholar 

  73. Flannery, M.R.: Ann. Phys. 61, 465 (1970)

    ADS  Google Scholar 

  74. Flannery, M.R.: Ann. Phys. 79, 480 (1973)

    ADS  Google Scholar 

  75. Vriens, L.: In: McDaniel, E.W., McDowell, M.R.C. (eds.) Case Studies in Atomic Collision Physics, vol. I, North Holland, Amsterdam (1969)

    Google Scholar 

  76. Vriens, L.: Proc. Phys. Soc. 89, 13 (1966)

    ADS  Google Scholar 

  77. Roy, B.N., Rai, D.K.: J. Phys. B 5, 816 (1973)

    ADS  Google Scholar 

  78. Holt, A.R., Moiseiwitsch, B.: Advances in Atomic and Molecular Physics vol. 4. Academic Press, New York, p 143 (1968)

    Google Scholar 

  79. Bell, K.L., Kingston, A.E.: Advances in Atomic and Molecular Physics vol. 10. Academic Press, New York, p 53 (1974)

    Google Scholar 

  80. Green, L.C., Rush, P.P., Chandler, C.D.: Astrophys. J. Suppl. Ser. 3, 37 (1957)

    ADS  Google Scholar 

  81. Sommerville, W.B.: Proc. Phys. Soc. 82, 446 (1963)

    ADS  Google Scholar 

  82. Burgess, A., Hummer, D.G., Tully, J.A.: Phil. Trans. Roy. Soc. A 266, 255 (1970)

    ADS  Google Scholar 

  83. Whelan, C.T.: J. Phys. B 19, 2343–2355 (1986)

    ADS  Google Scholar 

  84. Tanaka, H., Brunger, M.J., Campbell, L., Kato, H., Hoshino, M., Rau, A.R.P.: Rev. Mod. Phys. 88, 025004 (2016)

    ADS  Google Scholar 

  85. Kim, Y.-K.: Phys. Rev. A 64, 032713 (2001)

    ADS  Google Scholar 

  86. Walske, M.C.: Phys. Rev. 101, 940 (1956)

    ADS  Google Scholar 

  87. Khandelwal, G.S., Merzbacher, E.: Phys. Rev. 144, 349 (1966)

    ADS  Google Scholar 

  88. Merzbacher, E., Lewis, H.W.: X-ray production by heavy charged particles. In: Flügge, E. (ed.) Handbuch der Physik, vol. 34/2, Springer, Berlin, Heidelberg (1958)

    Google Scholar 

  89. Bethe, H.: Quantenmechanik der Ein- und Zwei-Elektronenprobleme. In: Flügge, E. (ed.) Handbuch der Physik, vol. 24/1, Springer, Berlin, Heidelberg (1933)

    Google Scholar 

  90. Inokuti, M.: Argonne National Laboratory Report No. ANL-7220, (1965)

    Google Scholar 

  91. Inokuti, M.: Rev. Mod. Phys. 43, 297 (1971)

    ADS  Google Scholar 

  92. Flannery, M.R., McCann, K.J.: Astrophys. J. 236, 300 (1980)

    ADS  Google Scholar 

  93. Bates, D.R., Griffing, G.: Proc. Phys. Soc. 66A, 961 (1953)

    ADS  Google Scholar 

  94. Bates, D.R., Griffing, G.: Proc. Phys. Soc. 67A, 663 (1954)

    ADS  Google Scholar 

  95. Bates, D.R., Dalgarno, A.: Proc. Phys. Soc. 65A, 919 (1952)

    ADS  Google Scholar 

  96. Omidvar, K.: Phys. Rev. 140, A26 (1965)

    ADS  Google Scholar 

  97. Omidvar, K.: Phys. Rev. 140, A38 (1965)

    ADS  Google Scholar 

  98. Starostin, A.N.: Sov. Phys. JETP 25, 80 (1967)

    ADS  Google Scholar 

  99. Burhop, E.H.S.: Proc. Camb. Phil. Soc. 36, 43 (1940)

    ADS  Google Scholar 

  100. Burhop, E.H.S.: J. Phys. B 5, L241 (1972)

    ADS  Google Scholar 

  101. Mott, N.F., Massey, H.S.W.: The Theory of Atomic Collisions. Clarendon Press, Oxford, pp 489–490 (1965)

    Google Scholar 

  102. Bates, D.R., Dalgarno, A.: Proc. Phys. Soc. 66A, 972 (1953)

    ADS  Google Scholar 

  103. Jackson, J.D., Schiff, H.: Phys. Rev. 89, 359 (1953)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund J. Mansky II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mansky II, E.J. (2023). Rydberg Collision Theories. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_60

Download citation

Publish with us

Policies and ethics

Navigation