Anoikis Mediated by Stress-Activated MAPK Signaling Pathways

  • Chapter
  • First Online:
Anoikis
  • 315 Accesses

Abstract

The JUN NH2-terminal kinases (JNKs) and p38 mitogen-activated protein kinases (MAPKs) represent a group of signaling enzymes that are collectively named stress-activated MAPKs. Recent studies of epithelial cells have demonstrated that both of these signaling pathways promote detachment-induced cell death (anoikis) in vitro and in vivo. The p38 MAPK pathway phosphorylates activating transcription factor 2 (ATF2) and increases expression of the JUN transcription factor that promotes expression of the pro-apoptotic BCL2 family member BIM. The JNK signaling pathway causes phosphorylation of the transcription factor JUN and similarly causes increased BIM expression. JNK also causes pro-apoptotic phosphorylation of the BIM-related protein BMF and inhibitory phosphorylation of the anti-apoptotic protein MCL1. The JNK and p38 MAPK signaling pathways therefore function co-operatively and non-redundantly to increase BIM and BMF apoptotic activity. The mechanism of cell death is mediated by the BAX/BAK-dependent intrinsic cell death pathway. Blocking either the JNK or the p38 MAPK pathway suppresses epithelial cell anoikis in vitro and prevents luminal clearance of mammary epithelial ducts in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 137.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi-Yamada T, O’Connor MB (2002) Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev Biol 251(1):74–90

    Article  CAS  PubMed  Google Scholar 

  2. Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K (1999) Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400(6740):166–169. https://doi.org/10.1038/22112

    Article  CAS  PubMed  Google Scholar 

  3. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679–692. https://doi.org/10.1038/nri3495

    Article  CAS  PubMed  Google Scholar 

  4. Barutcu SA, Girnius N, Vernia S, Davis RJ (2018) Role of the MAPK/cJun NH2-terminal kinase signaling pathway in starvation-induced autophagy. Autophagy 14(9):1586–1595. https://doi.org/10.1080/15548627.2018.1466013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21(3):326–329. https://doi.org/10.1038/6854

    Article  CAS  PubMed  Google Scholar 

  6. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17(16):1969–1978. https://doi.org/10.1101/gad.1107303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM (1997) The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90(2):315–323

    Article  CAS  PubMed  Google Scholar 

  8. Cellurale C, Girnius N, Jiang F, Cavanagh-Kyros J, Lu S, Garlick DS, Mercurio AM, Davis RJ (2012) Role of JNK in mammary gland development and breast cancer. Cancer Res 72(2):472–481. https://doi.org/10.1158/0008-5472.CAN-11-1628

    Article  CAS  PubMed  Google Scholar 

  9. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271 (50):31929–31936. https://doi.org/10.1074/jbc.271.50.31929

  10. Chen M, Geoffroy CG, Wong HN, Tress O, Nguyen MT, Holzman LB, ** Y, Zheng B (2016) Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons. Sci Rep 6:31482. https://doi.org/10.1038/srep31482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi H, Sarkisian MR, Rakic P, Flavell RA (2005) Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc Natl Acad Sci USA 102(10):3846–3851. https://doi.org/10.1073/pnas.0500026102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417. https://doi.org/10.1042/BJ20100323

    Article  CAS  PubMed  Google Scholar 

  13. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63. https://doi.org/10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  14. Das M, Sabio G, Jiang F, Rincon M, Flavell RA, Davis RJ (2009) Induction of hepatitis by JNK-mediated expression of TNF-alpha. Cell 136(2):249–260. https://doi.org/10.1016/j.cell.2008.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das M, Garlick DS, Greiner DL, Davis RJ (2011) The role of JNK in the development of hepatocellular carcinoma. Genes Dev 25(6):634–645. https://doi.org/10.1101/gad.1989311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    Article  CAS  PubMed  Google Scholar 

  17. De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98(11):6168–6173. https://doi.org/10.1073/pnas.111027698

    Article  PubMed  PubMed Central  Google Scholar 

  18. Del Barco Barrantes I, Stephan-Otto Attolini C, Slobodnyuk K, Igea A, Gregorio S, Gawrzak S, Gomis RR, Nebreda AR (2018) Regulation of mammary luminal cell fate and tumorigenesis by p38alpha. Stem Cell Reports 10(1):257–271. https://doi.org/10.1016/j.stemcr.2017.11.021

    Article  CAS  Google Scholar 

  19. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430(7003):1034–1039. https://doi.org/10.1038/nature02765

    Article  CAS  PubMed  Google Scholar 

  20. Frisch SM, Vuori K, Kelaita D, Sicks S (1996) A role for Jun-N-terminal kinase in anoikis; suppression by bcl-2 and crmA. J Cell Biol 135(5):1377–1382

    Article  CAS  PubMed  Google Scholar 

  21. Gallo KA, Johnson GL (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3(9):663–672. https://doi.org/10.1038/nrm906

    Article  CAS  PubMed  Google Scholar 

  22. Gibson MC, Perrimon N (2005) Extrusion and death of DPP/BMP-compromised epithelial cells in the develo** Drosophila wing. Science 307(5716):1785–1789. https://doi.org/10.1126/science.1104751

    Article  CAS  PubMed  Google Scholar 

  23. Girnius N, Davis RJ (2017) JNK promotes epithelial cell anoikis by transcriptional and post-translational regulation of BH3-only proteins. Cell Rep 21(7):1910–1921. https://doi.org/10.1016/j.celrep.2017.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Girnius N, Edwards YJ, Garlick DS, Davis RJ (2018) The cJUN NH2-terminal kinase (JNK) signaling pathway promotes genome stability and prevents tumor initiation. Elife 7. https://doi.org/10.7554/eLife.36389

  25. Girnius N, Edwards YJK, Davis RJ (2018) The cJUN NH2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution. Cell Death Differ. https://doi.org/10.1038/s41418-018-0081-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gupta S, Campbell D, Derijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267(5196):389–393. https://doi.org/10.1126/science.7824938

    Article  CAS  PubMed  Google Scholar 

  27. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15(11):2760–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, Farias EF, Condeelis J, Klein CA, Aguirre-Ghiso JA (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. https://doi.org/10.1038/nature20609

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ (2002) Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet 32(1):201–205. https://doi.org/10.1038/ng946

    Article  CAS  PubMed  Google Scholar 

  30. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103(6):839–842

    Article  CAS  PubMed  Google Scholar 

  31. Hubner A, Barrett T, Flavell RA, Davis RJ (2008) Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell 30(4):415–425. https://doi.org/10.1016/j.molcel.2008.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hubner A, Cavanagh-Kyros J, Rincon M, Flavell RA, Davis RJ (2010) Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo. Mol Cell Biol 30(1):98–105. https://doi.org/10.1128/MCB.01155-09

    Article  CAS  PubMed  Google Scholar 

  33. Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed JC, Rosen JM (1996) Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122(12):4013–4022

    Article  CAS  PubMed  Google Scholar 

  34. Jaeschke A, Davis RJ (2007) Metabolic stress signaling mediated by mixed-lineage kinases. Mol Cell 27(3):498–508. https://doi.org/10.1016/j.molcel.2007.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jandhyala DM, Wong J, Mantis NJ, Magun BE, Leong JM, Thorpe CM (2016) A novel Zak knockout mouse with a defective ribotoxic stress response. Toxins (Basel) 8(9). https://doi.org/10.3390/toxins8090259

  36. Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA, Davis RJ (2011) TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 25(19):2069–2078. https://doi.org/10.1101/gad.17224711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kesavan K, Lobel-Rice K, Sun W, Lapadat R, Webb S, Johnson GL, Garrington TP (2004) MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol 199(1):140–148. https://doi.org/10.1002/jcp.10457

    Article  CAS  PubMed  Google Scholar 

  38. Khwaja A, Downward J (1997) Lack of correlation between activation of Jun-NH2-terminal kinase and induction of apoptosis after detachment of epithelial cells. J Cell Biol 139(4):1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22(4):667–676

    Article  CAS  PubMed  Google Scholar 

  40. Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11(6):1479–1489

    Article  CAS  PubMed  Google Scholar 

  41. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100(5):2432–2437. https://doi.org/10.1073/pnas.0438011100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22(13):4929–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leung CT, Brugge JS (2012) Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482(7385):410–413. https://doi.org/10.1038/nature10826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ (2003) Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein. Bim J Biol Chem 278(21):18811–18816. https://doi.org/10.1074/jbc.M301010200

    Article  CAS  PubMed  Google Scholar 

  45. Ma C, Ying C, Yuan Z, Song B, Li D, Liu Y, Lai B, Li W, Chen R, Ching YP, Li M (2007) dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J Biol Chem 282(42):30901–30909. https://doi.org/10.1074/jbc.M608694200

    Article  CAS  PubMed  Google Scholar 

  46. Mailleux AA, Overholtzer M, Brugge JS (2008) Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 7(1):57–62. https://doi.org/10.4161/cc.7.1.5150

    Article  CAS  PubMed  Google Scholar 

  47. Matesanz N, Nikolic I, Leiva M, Pulgarin-Alfaro M, Santamans AM, Bernardo E, Mora A, Herrera-Melle L, Rodriguez E, Beiroa D, Caballero A, Martin-Garcia E, Acin-Perez R, Hernandez-Cosido L, Leiva-Vega L, Torres JL, Centeno F, Nebreda AR, Enriquez JA, Nogueiras R, Marcos M, Sabio G (2018) p38alpha blocks brown adipose tissue thermogenesis through p38delta inhibition. PLoS Biol 16(7): https://doi.org/10.1371/journal.pbio.2004455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McNally S, McArdle E, Gilligan E, Napoletano S, Gajewska M, Bergin O, McCarthy S, Whyte J, Bianchi A, Stack J, Martin F (2011) c-Jun N-terminal kinase activity supports multiple phases of 3D-mammary epithelial acinus formation. Int J Dev Biol 55(7–9):731–744. https://doi.org/10.1387/ijdb.113374sm

    Article  PubMed  Google Scholar 

  49. Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12(4):387–389. https://doi.org/10.1038/nn.2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morel C, Carlson SM, White FM, Davis RJ (2009) Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol 29(14):3845–3852. https://doi.org/10.1128/MCB.00279-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murtagh J, McArdle E, Gilligan E, Thornton L, Furlong F, Martin F (2004) Organization of mammary epithelial cells into 3D acinar structures requires glucocorticoid and JNK signaling. J Cell Biol 166(1):133–143. https://doi.org/10.1083/jcb.200403020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297(5589):2048–2051. https://doi.org/10.1126/science.1073163

    Article  CAS  PubMed  Google Scholar 

  53. Pinon JD, Labi V, Egle A, Villunger A (2008) Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27(Suppl 1):S41–52. https://doi.org/10.1038/onc.2009.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pradeep CR, Kostler WJ, Lauriola M, Granit RZ, Zhang F, Jacob-Hirsch J, Rechavi G, Nair HB, Hennessy BT, Gonzalez-Angulo AM, Tekmal RR, Ben-Porath I, Mills GB, Domany E, Yarden Y (2012) Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling. Oncogene 31(7):907–917. https://doi.org/10.1038/onc.2011.279

    Article  CAS  PubMed  Google Scholar 

  55. Qin J, Yao J, Cui G, **ao H, Kim TW, Fraczek J, Wightman P, Sato S, Akira S, Puel A, Casanova JL, Su B, Li X (2006) TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. J Biol Chem 281(30):21013–21021. https://doi.org/10.1074/jbc.M512908200

    Article  CAS  PubMed  Google Scholar 

  56. Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH (2007) TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 26(8):2005–2014. https://doi.org/10.1038/sj.emboj.7601668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5(8):733–740. https://doi.org/10.1038/ncb1026

    Article  CAS  PubMed  Google Scholar 

  58. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89(1–2):115–124

    Article  CAS  PubMed  Google Scholar 

  59. Sakauchi C, Wakatsuki H, Ichijo H, Hattori K (2017) Pleiotropic properties of ASK1. Biochim Biophys Acta 1861(1 Pt A):3030–3038. https://doi.org/10.1016/j.bbagen.2016.09.028

  60. Schmelzle T, Mailleux AA, Overholtzer M, Carroll JS, Solimini NL, Lightcap ES, Veiby OP, Brugge JS (2007) Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci USA 104(10):3787–3792. https://doi.org/10.1073/pnas.0700115104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen J, Dahmann C (2005) Extrusion of cells with inappropriate Dpp signaling from Drosophila wing disc epithelia. Science 307(5716):1789–1790. https://doi.org/10.1126/science.1104784

    Article  CAS  PubMed  Google Scholar 

  62. Shim JH, **ao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19(22):2668–2681. https://doi.org/10.1101/gad.1360605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh PK, Roukounakis A, Frank DO, Kirschnek S, Das KK, Neumann S, Madl J, Romer W, Zorzin C, Borner C, Haimovici A, Garcia-Saez A, Weber A, Hacker G (2017) Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev 31(17):1754–1769. https://doi.org/10.1101/gad.302497.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taraseviciute A, Vincent BT, Schedin P, Jones PL (2010) Quantitative analysis of three-dimensional human mammary epithelial tissue architecture reveals a role for tenascin-C in regulating c-met function. Am J Pathol 176(2):827–838. https://doi.org/10.2353/ajpath.2010.090006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228. https://doi.org/10.1093/embo-reports/kve046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288(5467):870–874

    Article  CAS  PubMed  Google Scholar 

  67. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15(11):1419–1426. https://doi.org/10.1101/gad.888501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uhlik MT, Abell AN, Cuevas BD, Nakamura K, Johnson GL (2004) Wiring diagrams of MAPK regulation by MEKK1, 2, and 3. Biochem Cell Biol 82(6):658–663. https://doi.org/10.1139/o04-114

    Article  CAS  PubMed  Google Scholar 

  69. Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ (2006) Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21(5):701–710. https://doi.org/10.1016/j.molcel.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  70. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549. https://doi.org/10.1038/nrc2694

    Article  CAS  PubMed  Google Scholar 

  71. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688. https://doi.org/10.1016/j.molcel.2008.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA (2011) p38alpha signaling induces anoikis and Lumen formation during mammary morphogenesis. Sci Signal 4(174):ra34. https://doi.org/10.1126/scisignal.2001684

  73. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19(2):142–149. https://doi.org/10.1016/j.ceb.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  74. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J (2001) Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29(3):629–643

    Article  CAS  PubMed  Google Scholar 

  75. **a Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  76. **a Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M (2000) MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97(10):5243–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389(6653):865–870. https://doi.org/10.1038/39899

    Article  CAS  PubMed  Google Scholar 

  78. Yujiri T, Sather S, Fanger GR, Johnson GL (1998) Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282(5395):1911–1914

    Article  CAS  PubMed  Google Scholar 

  79. Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, Allred C, Muthuswamy SK (2008) Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135(5):865–878. https://doi.org/10.1016/j.cell.2008.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19(1):21–30. https://doi.org/10.1128/mcb.19.1.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girnius, N., Davis, R.J. (2021). Anoikis Mediated by Stress-Activated MAPK Signaling Pathways. In: Frisch, S.M. (eds) Anoikis. Springer, Cham. https://doi.org/10.1007/978-3-030-73856-3_8

Download citation

Publish with us

Policies and ethics

Navigation