Soil Microbes in Plant Growth Promotion and for Mitigation of Abiotic Stress of Drought

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Abstract

A large proportion of world’s agricultural land is becoming less productive or completely unproductive due to different environmental factors. Drought is one of the major agriculture constraints which is caused by insufficient rainfall, prolonged and frequent dry spells or changes in rainfall patterns. Drought impairs growth, water relations and water use efficiency of plants, which further alters their morphological, physiological and biochemical activities. Crop growth models predict that occurrence and intensity of drought will be more severe in future. In the current scenario, to meet global food demands, various strategies have been formulated to cultivate the crops under drought-affected area. Among them, the use of different microbial community could be a viable strategy, which enables plants to combat with water stress through various direct and indirect ways. The use of microbial inoculation for drought stress management is considered as cost-effective and more eco-friendly approach than traditional methods. Various rhizospheric soil microbes, including arbuscular mycorrhizal (AM) fungi, N-fixing bacteria and plant growth promoting microbes (PGPMs), help in stress resistance and better plant performance. PGPMs represent a broad range of archaea, bacteria and fungi, which are having excellent root association ability to produce different enzymes and metabolites for various abiotic stress tolerances. In the present chapter, the exploration of potential soil and root microbiome and their mechanism of actions for drought tolerance in relation to better plant growth and development have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (2021) Industrially important fungi for sustainable development, vol 1: Biodiversity and ecological perspective. Springer, Cham

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Armada E, Probanza A, Roldán A, Azcón R (2016) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J Plant Physiol 192:1–12

    Article  CAS  PubMed  Google Scholar 

  • Armada E, Roldan A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses. New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM (2012) Regulation of root water uptake under drought stress conditions. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, Heidelberg, pp 113–127. https://doi.org/10.1007/978-3-642-32653-0

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Google Scholar 

  • Asghari B, Khademian R, Sedaghati B (2020) Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae 263:109132

    Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Azcón R, Medina A, ArocaR, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: de Bruijn FJ (Ed) Molecular microbial ecology of the rhizosphere, pp 991–1002. https://doi.org/10.1002/9781118297674.ch7

  • Bagheri V, Shamshiri MH, Shirani H, Roosta HR (2018) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress 14:1591–1604

    Google Scholar 

  • Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q et al (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20(17):4199

    Article  PubMed Central  CAS  Google Scholar 

  • Bahmani M, Naghdi R, Kartoolinejad D (2018) Milkweed seedlings tolerance against water stress: comparison of inoculations with Rhizophagus irregularis and Pseudomonas putida. Environ Technol 10:111–121

    Google Scholar 

  • Bano QUDSIA, Ilyas N, Bano A, Zafar NADIA, Akram ABIDA, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Barzana G, Aroca R, Ruiz-Lozano JM (2015) Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ 38:1613–1627

    Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Bolto MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant Microbe Interact 22(5):487–497

    Article  CAS  Google Scholar 

  • Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Douira A et al (2020) Arbuscular Mycorrhizal fungi mediate drought tolerance and recovery in two contrasting Carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (In) organic adjustments. Plants 9(1):80

    Google Scholar 

  • Caravaca F, Alguacil MM, Hernández JA, Roldán A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197

    Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospiriflum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30(3–4):343–350

    Article  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125(4):2053–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53

    Article  Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Souss A (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R, 3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microb Interact 21:1067–1075

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Planta 97:795–803

    Article  CAS  Google Scholar 

  • Conesa MR, Rosa JM, Domingo R, Banon S, Perez-Pastor A (2016) Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv Crimson seedless) grown in pots. Sci Hort 202:9–16

    Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J of Bot 82(2):273–281

    Article  Google Scholar 

  • Cseuz LJ, Pauk C, Lantos Kovacs I (2009) Wheat breeding for drought tolerance (Efforts and results). Alps-Adria Sci Workshop 36:245–248

    Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368(6488):270–274

    Article  PubMed  CAS  Google Scholar 

  • Dikilitas M, Karakas S, Simsek E, Yadav AN (2021) Microbes from cold deserts and their applications in mitigation of cold stress in plants. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 126–152. https://doi.org/10.1201/9780429328633-7

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212(2):153–162

    Article  Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, **e F (2020a) Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy 10(2):302

    Article  CAS  Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, **e F (2020b) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12

    Article  CAS  PubMed  Google Scholar 

  • Editorial N (2010) How to feed a hungry world. Nature 466(7306):531–532

    Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Biotechnological techniques of stress tolerance in plants. USA Stadium Press LLC, pp 21–39

    Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Caroline A (eds) Sustainable agriculture. Springer, Dordrecht, pp 153–188. https://doi.org/10.1051/agro:2008021

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    Google Scholar 

  • Figueiredo MV, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40(1):182–188

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M et al (2011) Solutions to a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environ 28(8):1056–1071

    Article  CAS  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Google Scholar 

  • Garbeva P, Weisskopf L (2020) Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol 226(1):32–43

    Google Scholar 

  • García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philosop Trans R Soc B Biol Sci 366(1569):1438–1452

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

    Google Scholar 

  • Gontia-Mishra I, Sapre S, Deshmukh R, Sikdar S, Tiwari S (2020) Microbe-mediated drought tolerance in plants: current developments and future challenges. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 351–379. https://doi.org/10.1007/978-3-030-38453-1

  • Gou W, Tian L, Ruan Z, Zheng PE, Chen FU, Zhang L et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (zea mays) by three plant growth promoting rhizobacteria (pgpr) strains. Pak J Bot 47:581–586

    CAS  Google Scholar 

  • Gowtham HG, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M et al (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422

    Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54(9):951–961

    Google Scholar 

  • Grzesiak S, Grzesiak MT, Hura T, Marcinska L, Rzepka A (2013) Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ Exp Bot 88:2–10

    Article  Google Scholar 

  • Guler NS, Pehlivan, N, Karaoglu, SA, Guzel, S. Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38(6):132

    Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). African J Biotechnol 14:764–773

    Article  Google Scholar 

  • Hartman K, Tringe SG (2019) Interactions between plants and soil sha** the root microbiome under abiotic stress. Biochem J 476(19):2705–2724

    Article  CAS  PubMed  Google Scholar 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (eds) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Sarker MAZ, Saifuzzaman M, Silva JA, Lozovskaya MV, Akhter (2013) Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L) genotypes grown under heat stress. Int J Plant Prod 7:615–636

    Google Scholar 

  • Hsiao A (2000) Effect of water deficit on morphological and physiological characterizes in Rice (Oryza sativa L.). J Agri 3:93–97

    Google Scholar 

  • Huang YM, Zou YN, Wu QS (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep 7:42335

    Google Scholar 

  • Hui LJ, Kim SD (2013) Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in Pepper. Plant Pathol J 29:201–208

    Article  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Exopolysaccharides producing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13

    Google Scholar 

  • Jochum M, McWilliams KM, Borrego E, Kolomiets M, Niu G, Pierson E et al (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130

    Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in dry lands. Ann Microbiol 66(1):35–42

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2019) Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE 14(9):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94(11):1259–1266

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020b) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-019-01151-4

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020c) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, vol 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Chauhan PS et al (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav 11(1):e1071004

    Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224

    Article  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    Google Scholar 

  • Li T, Sun Y, Ruan Y, Xu L, Hu Y, Hao Z, Zhang X, Li H, Wang Y, Yang L (2016) Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Mycorrhiza 26:879–893

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Watts DB, Kloepper JW, Feng Y, Torbert HA (2020) Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Comm Soil Sci Plant Anal 51(2):250–264

    Article  CAS  Google Scholar 

  • Liu F, **ng S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotec 97(20):9155–9164

    Google Scholar 

  • Liu H, Brettell LE, Qiu Z, Singh BK (2020) Microbiome-mediated stress resistance in plants. Trends Plant Sci

    Google Scholar 

  • Lopez-Obando M, Ligerot Y, Bonhomme S, Boyer FD, Rameau C (2015) Strigolactone biosynthesis and signaling in plant development. Development 142:3615–3619

    Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mancosu N, Snyder RL, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for food production. Water 7(3):975–992

    Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. CR Biol 331(6):418–425

    Article  CAS  Google Scholar 

  • Maqsood M, Shehzad MA, Ahmad S, Mushtaq S (2012) Performance of wheat (Triticum aestivum L) genotypes associated with agronomical traits under water stress conditions. Asian J Pharm Biol Res 2:45–50

    Google Scholar 

  • Maqsood M, Shehzad MA, Wahid A, Butt AA (2013) Improving drought tolerance in maize (Zea mays) with potassium application in furrow irrigation systems. Int J Agric Biol 15:1193–1198

    Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7(10):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H, Zocchi G, Daffonchio D et al (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models. Plant Signal Behav 8(10):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenho R, Zwiazek JJ, Weiss M, Hampp R et al (2005) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rodriguez JA, Huertas R, Ho-Plagaro T, Ocampo JA, Tureckova V, Tarkowska D et al (2016) Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato. Front Plant Sci 7:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L) plants under unstressed and salt-stressed conditions. Planta 232(2):533–543

    Article  CAS  PubMed  Google Scholar 

  • Massad TJ, Dyer LA, Vega CG (2012) Cost of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE 7:7554

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Cherkauer KA (2010) Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agr Forest Meterol 150(7–8):1030–1045

    Article  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21(7):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Galván AE, Cortés-Patiño S, Romero-Perdomo F, Uribe-Vélez D, Bashan Y, Bonilla RR (2020) Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in guinea grass. Appl Soil Ecol 147:

    Article  Google Scholar 

  • Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone-type Strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir, ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20(10):2541

    Article  CAS  PubMed Central  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Niinemets U (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    Article  CAS  PubMed  Google Scholar 

  • Ouledali S, Ennajeh M, Ferrandino A, Khemira H, Schubert A, Secchi F (2019) Influence of Arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. S Afr J Bot 121:152–158

    Article  CAS  Google Scholar 

  • Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N et al (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243(5):1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Chen Z, Li Y, Mao L, **e H, Cai Y (2020) Microbiota community assembly in wild rice (Oryza longistaminata) in response to drought stress shows phylogenetic conservation, stochasticity, and aboveground-belowground patterns

    Google Scholar 

  • Pineda A, DickeM Pieterse CM, Pozo MJ (2013) Beneficial microbes in a changing environment: are they always hel** plants to deal with insects. Funct Ecol 27(3):574–586

    Article  Google Scholar 

  • Poltronieri P, Reca IB, De Domenico S, Santino A (2020) Plant-microbe interactions in develo** environmental stress resistance in plants. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II. Springer, Singapore, pp 583–602. https://doi.org/10.1007/978-981-15-2172-0

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Exp Bot 55(403):1743–1750

    Article  CAS  Google Scholar 

  • Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J et al (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68(18):5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashad MH, Ragab AA, Salem SM (2001) The influence of some Bradyrhizobium and Rhizobium strains as plant growth promoting rhizobacteria on the growth and yield of sorghum (Sorghum bicolor L.) plants under drought stress. In: Horst W et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Springer, Dordrecht, pp 664–665. https://doi.org/10.1007/0-306-47624-x)

  • Raza W, Shen Q (2020) Volatile organic compounds mediated plant-microbe interactions in soil. In Sharma V, Salwan R, Al-Ani LKT (eds) Molecular aspects of plant beneficial microbes in agriculture. Academic Press, pp 209–219. https://doi.org/10.1016/c2018-0-03869-4

  • Rodriguez SJ, Suarez R, Caballero MJ, Itturiaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  CAS  Google Scholar 

  • Rucker KS, Kevin CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 22:14–18

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell Environ 39(2):441–452

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Google Scholar 

  • Sandhya VSKZ, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126

    Article  CAS  Google Scholar 

  • Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB et al (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg, pp 205–224. https://doi.org/10.1007/978-3-642-23465-1_10

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. CR Biol 331(3):215–225

    Article  Google Scholar 

  • Shi L, Wang Z, Kim WS (2019) Effect of drought stress on shoot growth and physiological response in the cut rose ‘charming black’ at different developmental stages. Hortic Environ Biote 60(1):1–8

    Article  CAS  Google Scholar 

  • Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145

    Article  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Bio 27:52–58

    Article  CAS  Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. Proteomics 136:202–213

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107(3):245–253

    Article  Google Scholar 

  • TerHorst CP, Lennon JT, Lau JA (2014) The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc R Soc B Biol Sci 281(1785):20140028

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: vol 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Gen Bio 14(6):1–10

    Google Scholar 

  • Ullah A, Akbar A, Luo Q, Khan AH, Manghwar H, Shaban M, Yang X (2019) Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb Ecol 77(2):429–439

    Article  CAS  PubMed  Google Scholar 

  • Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M (2016) Growth behavior of tomato (Solanum lycopersicum L) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35(1)

    Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54(2):226–230

    Google Scholar 

  • Vílchez JI, García-Fontana C, Román-Naranjo D, González-López J, Manzanera M (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Guo Y, Wang C, Liu H, Niu D, Wang Y, Guo J (2012) Enhancement of tomato (Lycopersicon esculentum L) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156. J Agric Biotech Sustain Dev 20(10):1097–1105

    CAS  Google Scholar 

  • **e W, Hao Z, Zhou X, Jiang X, Xu L, Wu S et al (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:285–300

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/jabb.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021a) Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 278–290. https://doi.org/10.1201/9780429328633-16

  • Yadav AN, Singh J, Singh C, Yadav N (2021b) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:122–1214

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56(7):715–721

    Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Jeter RM et al (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104

    Google Scholar 

  • Zhang M, Yang L, Hao R, Bai X, Wang Y, Yu X (2020) Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 1–18

    Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi aect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

  • Zou YN, Srivastava AK, Ni QD, Wu QS (2015) Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front Microbiol 6:203

    Google Scholar 

  • Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS (2017) Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci Rep 7:41134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Banaras Hindu University for providing the necessary facilities for doing the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Singh Jatav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jatav, S.S. et al. (2021). Soil Microbes in Plant Growth Promotion and for Mitigation of Abiotic Stress of Drought. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_7

Download citation

Publish with us

Policies and ethics

Navigation