Plant Growth-Promoting Soil Microbiomes: Beneficial Attributes and Potential Applications

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 27))

Abstract

Soil microbiome constitutes an integral component of plant–soil–microbe associations and has a key impact on the ecosystem. The soil microbiome influences key biological processes namely bio-geochemical cycling, plant nutritional uptake and carbon sequestration. The present era has witnessed the emerging significance of soil microbiome as a dynamic system influencing plant productivity and conferring stress tolerance to the plants, having a major impact on the ecosystem. Comprehensive knowledge about plant–soil microbiome is essential for increasing agricultural output, maintenance of soil health towards more sustainable agriculture. Discussing the emerging significance of soil microbiomes in the recent perspective, this chapter extensively focuses on the soil microbiome diversity and distribution in nature, providing an overview of its integral association and dynamics in association with the plants. Moreover, the beneficial attributes of the soil microbiome and its socio-economic applications in a biotechnological perspective are herein discussed. Recent approaches in bioengineering soil microbiomes provide a key platform to enhance food security and sustainable agriculture for millions across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah RAB, Trabelsi BM, Nefzi A, Khiareddine HJ, Remadi MD (2016) Isolation of endophytic bacteria from Withania somnifera and assessment of their ability to suppress Fusarium wilt disease in tomato and to promote plant growth. J Plant Pathol Microbiol 7(5):2–11

    Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europeaus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Article  PubMed  Google Scholar 

  • Angel R, Nepel M, Panholzl C, Schmidt H, Herbold CW, Eichorst SA et al (2018) Evaluation of primers targeting the diazotroph functional gene and development of NifMAP—a bioinformatics pipeline for analyzing nifH amplicon data. Front Microbiol 9(703):1–15

    Google Scholar 

  • Arrage AA, Phelps TJ, Benoit RE, White DC (1993) Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl Environ Microbiol 59:3545–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunachalam K, Gill HS, Chandra RK (2000) Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr 54:263–267

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Van Der Putten WH (2014) Below ground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Manning P, Morrien E, Vries FT (2013) Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343

    Article  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1 carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during water logging stress via reduced ethylene. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Benton D, Williams C, Brown A (2010) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361

    Article  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B et al (2013) Effect of gibberellic acid and calliterpenone on plant growth attributes trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol Biochem 66:150–158

    Article  CAS  PubMed  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144

    Article  CAS  Google Scholar 

  • Cajka T, Fiehn O (2016) Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem 88:524–545

    Google Scholar 

  • Caldwell MM, Robberecht R, Nowak RS (1982) Differential photosynthetic inhibitory by ultraviolet B radiation in species from the Arctic-alpine lifezone. Arct Alp Res 14:195–202

    Article  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with climate change factors. Photochem Photobiol Sci 6:252–266

    Article  CAS  PubMed  Google Scholar 

  • Carson JK, Gonzalez-Quinones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB et al (2010) Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol 76:3936–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazorla FM, Codina JC, Abad C, Arrebola E, Tores JA, Murillo J (2008) 62-kb plasmids harboring rulAB homologues confer UV-tolerance and epiphytic fitness to Pseudomonas syringae pv. syringae mango isolates. Microbial Ecol 56:283–291

    Article  CAS  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang D, Chen X, Wang J, Diao J, Zhang J et al (2015) Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl Soil Ecol 92:35–44

    Article  Google Scholar 

  • Chiappero J, del Rosario Cappellari L, Sosa Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crops Prod 139:111553

    Google Scholar 

  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, Gross KL et al (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10:596–607

    Article  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prod 9:171–190

    Google Scholar 

  • Collavino MM, Tripp HJ, Frank IE, Vidoz ML, Calderoli PA, Donato M et al (2014) nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ Microbiol 16:3211–3223

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gang IH, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Coolon JD, Jones KL, Todd TC, Blair JM, Herman MA (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tall grass prairie. PloS One 8:e67884

    Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

  • Di-Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohrmann AB, Tebbe CC (2005) Effect of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany. Appl Environ Microbiol 71:7750–7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey A, Kumar A, Abdullah EF, Hashmem A, Khan ML (2018) Growing more with less: breeding and develo** drought resilient soybean to improve food security. Ecol Indic 105:425–437

    Article  CAS  Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A et al (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429

    Article  Google Scholar 

  • El-Hadi N, El-Ala H, El-Azim W (2009) Response of some Mentha species to plant growth promoting bacteria (PGPB) isolated from soil rhizosphere. Aust J Basic Appl Sci 3(4):4437–4448

    Google Scholar 

  • El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5:651. Published 2014 Dec 4. https://doi.org/10.3389/fmicb.2014.00651

  • Emwas AH (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 1277:161–193

    Article  CAS  PubMed  Google Scholar 

  • Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM et al (2010) Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. App Environ Microb 76:4744–4749

    Article  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56(2):340–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM et al (2013) Fun Gene: the functional gene pipeline and repository. Front Microbiol 4:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Formanek P, Rejsek K, Vranova V (2014) Effect of elevated CO2, O3, and UV radiation on soils. Scientific World J 2014:8

    Article  CAS  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171

    Article  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Expr 8:73

    Article  CAS  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass EM, Meyer F (2011) The metagenomics RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. In: Handbook of molecular microbial ecology. I: metagenomics and complementary approaches. Wiley, Hoboken, pp 325–331

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Penrose biochemical and genetic mechanism used by plant growth promoting bacteria. Imperial College Press, London, UK

    Book  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11R86:2–13

    Google Scholar 

  • Gold MV (1995) Organic production/organic food: information access tools. USDA National Agricultural Library

    Google Scholar 

  • Golden JW, Yoon HS (1998) Heterocyst formation in Anabaena. Curr Opin Microbiol 1(6):623–629

    Article  CAS  PubMed  Google Scholar 

  • Gupta VV (2012) Beneficial microorganisms for sustainable agriculture. Microbiol Australia 3:113–115

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. MMBR 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–275

    Article  CAS  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Hettich RL, Pan C, Chourey K, Giannone RJ (2013) Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 85:4203–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurrell RF, Reddy MB, Juillerat MA, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    Article  CAS  PubMed  Google Scholar 

  • Jochum LM, Chen X, Lever MA, Loy A, Jorgensen BB, Schramm A et al (2017) Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of aarhus bay. Appl Environ Microbiol 83(23):1–15

    Article  CAS  Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nut Soil Sci 169:295–309

    Article  CAS  Google Scholar 

  • Johnson D, Campbell CD, Lee JA, Callaghan TV, Gwynn-Jones D (2002) Arctic microorganisms respond more to elevated UV-B radiation than CO2. Lett Nat 416:82–83

    Article  CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Rasheedul Md, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorates salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense system. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Kumar V et al (2020) Microbe-mediated biofortification for micronutrients: Present status and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23: https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  Google Scholar 

  • Kristiansson E, Hugenholtz P, Dalevi D (2009) Shotgun functionalize R: an R-package for functional comparison of metagenomes. Bioinformatics 25:2737–2738

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol Appl Sci 3(9):275–283

    Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015a) Isolation and characterization of bacterial endophytes from the roots of Cassiatora L. Ann Microbiol 65:1391–1399

    Article  CAS  Google Scholar 

  • Kumar A, Vandana RS, Singh M, Pandey KD (2015b) Plant growth promoting rhizobacteria (PGPR): a promising approach for disease management. Microbes and environmental management. Stadium Press, New Delhi, pp 191–205

    Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016a) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2(1):1009

    Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016b) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Kumar A, Ahmad MM, Sharma P (2017a) Influence of climatic and non-climatic factors on sustainable food security in India: a statistical investigation. IJSAMI 3(1):1–30

    Article  Google Scholar 

  • Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K et al (2017b) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromolec 98:595–609. https://doi.org/10.1016/j.ijbiomac.2017.01.134

    Article  CAS  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocat Agric Biotechnol 31:101883. https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: below ground solutions to an aboveground problem. Plant Physiol 166:670–689

    Article  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA producing endophytic bacteria from micro-propagated Echinacea plants using 16S rRNA sequencing. Plant Cell, Tissue Organ Cult 85:353–359

    Article  CAS  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Li L, Xu M, Ali ME, Zhang W, Duan Y, Li D (2018) Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE 13(9):1–18

    Article  Google Scholar 

  • Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6:120

    Google Scholar 

  • Liu B, Tu C, Hu S, Gumpertz M, Ristaino JB (2007) Effect of organic, sustainable and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl Soil Ecol 37:202–214

    Article  Google Scholar 

  • Loncaric Z, Karalic K, Popovic B, Rastija D, Vukobratovic M (2008) Total and plant available micronutrients in acidic and calcareous soils in Croatia. Cereal Res Commun 36:331–334

    CAS  Google Scholar 

  • Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Kostlbacher S, Marx H et al (2019) A bioinformatics guide to plant microbiome analysis. Front Plant Sci 10:1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    Article  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Maji D, Barnawal D, Gupta A, King S, Singh AK, Kalra A (2013) A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs). World J Microbiol Biotechnol 29:833–839

    Article  CAS  PubMed  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Hashem A, Abdullah EF (2018a) Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol 9:1–23

    CAS  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abdullah EF (2018b) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9

    Google Scholar 

  • Markley JL, Bruschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D et al (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40

    Article  CAS  PubMed  Google Scholar 

  • Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC et al (2015) Linking soil bacterial biodiversity and soil carbon stability. ISME J9:1477–1480

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. https://doi.org/10.24102/ijafr.v3i3.132

  • Mishra B, Sangwan RS, Mishra S, Jadaun JS, Sabir F, Sangwan NS (2014) Effect of cadmium stress on inductive enzymatic and non-enzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 251:1031–1045

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Crutzen PJ, Grooß JU, Burhl C, Russell JM, Gernandt H et al (1997) Severe chemical ozone loss in the Arctic during the winter of 1995–96. Nature 398:709–712

    Article  Google Scholar 

  • Naiman AD, Latronico A, de Salamone IEG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45:44–51

    Article  Google Scholar 

  • Namvar A, Khandan T (2013) Response of wheat to mineral nitrogen fertilizer and biofertilizer (Azotobacter sp. and Azospirillum sp.) inoculation under different levels of weed interference. Ekologija 59:85–94

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Navarro-Noyaa YE, Hernandez-Mendozaa E, Morales-Jimenez J, Jan-Robleroa J, Martınez-Romero E, Hernandez-Rodrıguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62:52–60

    Article  Google Scholar 

  • Ni J, Yan Q, Yu Y (2013) How much metagenomic sequencing is enough to achieve a given goal? Sci Rep 3:1968

    Article  PubMed  PubMed Central  Google Scholar 

  • Oku S, Komastu A, TajimaT Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemo taxis to tomato root exudates and root colonization. Microbes Environ 27(4):462–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivares M, Diaz-Ropero MP, Sierra S, Lara-Villoslada F, Fonolla J, Navas M et al (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23:254–260

    Article  CAS  PubMed  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Pandey SS, Singh S, Babu CSV, Shanker K, Shrivastava NK, Kalra A (2016) Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzyl iso-quinoline alkaloids. Planta 243:1097–1114

    Article  CAS  PubMed  Google Scholar 

  • Penella JS, Collar C, Haros M (2008) Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J Cereal Sci 48:715–721

    Article  CAS  Google Scholar 

  • Pester M, Rattei T, Flechl S, Grongroft A, Richter A, Overmann J et al (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pester M, Maixner F, Berry D, Rattei T, Koch H, Lucker S et al (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol 16:3055–3071

    Article  CAS  PubMed  Google Scholar 

  • Piccinin GG, Dan LGM, Braccini ALE, Mariano DC, Okumura RS, Bazo GL et al (2011) Agronomic efficiency of Azospirillum brasilense in physiological parameters and yield components in wheat crop. J Agron 10(4):132–135

    Article  Google Scholar 

  • Pırlak L, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32(7):1173–1184

    Article  CAS  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Intl J Agric Sustain 9:5–24

    Article  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav N, Rastegari AA et al (2020) Biodiversity, phylogenetic profiling and mechanisms of colonization of seed microbiomes. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 99–125. https://doi.org/10.1016/B978-0-12-820526-6.00007-5

  • Rekha K, Singh A, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Probiotics, prebiotics and synbiotics: current status and future uses for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 173–190. https://doi.org/10.1016/B978-0-12-820528-0.00012-0

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT (2018) Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems

    Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISMEJ 4:1340–1351

    Article  Google Scholar 

  • Ryan J, Sommer R (2012) Soil fertility and crop nutrition research at an international center in the Mediterranean region: achievements and future perspective. Arch Agron Soil Sci 58:S41–S54

    Article  Google Scholar 

  • Sabat S, Murthy VK, Shantha SL, Kushnoor D, Agarwal G, Thomas J et al (2014) Comparative study of cytokinin production isolated from bacteria and shoot induction. Indian J Biotechnol 13(4):544–546

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sanchez-Canizares C, JorrinB Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Shrivastava M, Ali SZ, Prasad VSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43:22–34

    Article  Google Scholar 

  • Sanschagrin S, Yergeau E (2014) Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp 90:

    Google Scholar 

  • Santoro MV, Cappellari LR, Giordano W, Banchio E (2015) Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol 17:1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, **ao K et al (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303

    Article  PubMed  Google Scholar 

  • Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J et al (2017) Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat Methods 14:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schafer P (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci 9:1–12

    Article  Google Scholar 

  • Sev TM, Khai AA, Aung A, Yu SS (2016) Evaluation of endophytic bacteria from some rice varieties for plant growth promoting activities. J Sci Innov Res 5(4):144–148

    Article  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A (2019) Plant growth promoting Rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. Food Security and Environmental Management. Chapter three, pp 41–66

    Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

  • Suddaby EC, Sourbeer MO (1990) Drawing pediatric arterial blood gases. Crit Care Nurse 10:28–31

    Article  CAS  PubMed  Google Scholar 

  • Suding KN, Collins SL, Gough L et al (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Nat Acad Sci 102:4387–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Sumner ME, Yamada T (2002) Farming with acidity. Commun Soil Sci Plant Anal 33(15–18):2467–2496

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of popular trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Tamames J, de la Pena S, de Lorenzo V (2012) COVER: a priori estimation of coverage for metagenomic sequencing. Environ Microbiol Rep 4:335–341

    Article  CAS  PubMed  Google Scholar 

  • Thakur MP, Geisen S (2019) Trophic regulations of the soil microbiome. Trends Microbiol 27(9):771–780

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: vol 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant microbe pollutant and climate nexus. Ecol Eng 82:330–335

    Article  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Putten W, Bardgett R, de Ruiter P, Hol W, Meyer K, Bezemer T et al (2009) Empirical and theoretical challenges in above ground below ground ecology. Oecologia 161:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM et al (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS ONE 8(6):1–12

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Kumar K, Dhaliwal HS (2017a) Microbes mediated biofortification of wheat (Triticum aestivum L.) for micronutrients by Fe-chelating and Zn-solubilizing bacteria. In: Proceeding of national conference on advances in food science and technology, p 199

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, vol 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

  • Vigneron A, Cruaud P, Alsop E, de Rezende JR, Head IM, Tsesmetzis N (2018) Beyond the tip of the iceberg; a new view of the diversity of sulfite- and sulfate-reducing microorganisms. ISME J 12:2096–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Yang B, Ren CG, Wang HW, Wang JY, Dai CC (2015) Involvement of abscisic acid and salicylic acid in signal cascade regulating bacteria. Plant 153:30–42

    CAS  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2020) Plant microbiomes for sustainable agriculture: current research and future challenges. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 475–482. https://doi.org/10.1007/978-3-030-38453-1_16

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/jabb.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar S, Kumar V, Kumar K et al (2017) Probiotic microbes: biodiversity, mechanisms of action and potential role in human health. In: Proceeding of national conference on advances in food science and technology

    Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020a) Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture: vol 2: functional annotation for crop protection. Springer International Publishing, Cham, pp 347–356. https://doi.org/10.1007/978-3-030-48474-3_12

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, vol 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li X, Liu J, Zhou Z, Zhang T, Wang X (2017) Bacterial diversity as affected by application of manure in red soils of subtropical China. Biol Fertil Soils 53(6):639–649

    Article  Google Scholar 

  • Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S, Rasul G et al (2016) Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS ONE 11(8):0160688

    Article  CAS  Google Scholar 

  • Zeleke J, Sheng Q, Wang JG, Huang MY, **a F, Wu JH et al (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front Microbiol 4:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wang C, Li X, Yang X, Zhao L, Liu L et al (2018) Linking plant ecological stoichiometry with soil nutrient and bacterial communities in apple orchards. Appl Soil Ecol 126:1–10

    Google Scholar 

  • Zhong W, Gu T, Wang W, Song B, Lin X, Huang Q (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522

    Article  CAS  Google Scholar 

  • Zhou J, He Z, Yang Y Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 1(6):1–17

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to their respective institutions for encouragement and support. No conflict of interests was declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhong Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, P., Bose, S.K., Bae, H. (2021). Plant Growth-Promoting Soil Microbiomes: Beneficial Attributes and Potential Applications. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_1

Download citation

Publish with us

Policies and ethics

Navigation