Bioanalytical Assays: Gas Chromatography (GC)

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 63 Accesses

Abstract

The quantitative determination of analytes in biological matrices such as blood and urine is called bioanalysis. Bioanalysis regulatory authorities and International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidance requires that the concentration-time profiles of drugs and/or metabolites in man or in animals are studied so their respective pharmacokinetics can be calculated and used as a basis for the evaluation of preclinical (especially toxicological) and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The number of theoretical plates is the number of discrete distillations that would have to be performed to obtain an equivalent separation. This number is commonly used as a measure of separation efficiency and is a valuable number to use when comparing the performance of various chromatographic columns.

  2. 2.

    Successor company: Aventis Pharma Deutschland GmbH.

  3. 3.

    Recovery over the concentration range validated: 95–100% for PGE 1, 86–89% for PGE 0, and 91–93% for 15-keto-PGE 0.

  4. 4.

    It responds to any molecule with a carbon–hydrogen bond, but not at all or poorly to compounds such as H2S, CCl4, or NH3.

References and Further Reading

  • Ahnoff M, Persson BA (1990) Chromatography of calcium channel blockers. J Chromatogr 531:181–213. Review

    Article  CAS  Google Scholar 

  • Albro PW, Fishbein L (1969) Determination of prostaglandins by gas-liquid chromatography. J Chromatogr 44:442–451

    Article  Google Scholar 

  • Blau K, Halket JM (1993) Handbook of derivatives for chromatography, 2nd edn. Wiley, New York, p 18

    Google Scholar 

  • Bogan JA (1977) Determination of the anthelmintic diethyl-carbamazine in tissue and plasma by gas-liquid chromatography. Analyst 102(1210):56–59

    Article  CAS  Google Scholar 

  • Carvalho M, Oliveira CH, Mendes GD et al (2001) Amlodipine bioequivalence study: quantification by liquid chromatography coupled to tandem mass spectrometry. Biopharm Drug Dispos 22:383–390

    Article  CAS  Google Scholar 

  • Dreyer G, Addiss D, Santos A et al (1998) Direct assessment in vivo of the efficacy of combined single-dose ivermectin and diethylcarbamazine against adult Wuchereria bancrofti. Trans R Soc Trop Med Hyg 92:219–222

    Article  CAS  Google Scholar 

  • Fischer C, Heuer B, Heuck K, Eichelbaum M (1986) Quantification of nitrendipine by stable isotope dilution and electron-capture negative ion chemical ionization. Biomed Environ Mass Spectrom 13:645–650

    Article  CAS  Google Scholar 

  • Hajdù P, Schmidt D, Bomm M, Keller A (1984) Determination of (2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid) (HOE 498) and its hydrolysis product in serum and urine. Arznm Forsch/Drug Res 34:1431–1435

    Google Scholar 

  • Hammes W, Buchsler U, Kinder P, Bokens H (1999) Simultaneous determination of prostaglandin E1, prostaglandin E0 and 15-keto-prostaglandin E0 in human plasma by gas chromatography/negative-ion chemical-ionization tandem mass spectrometry. J Chromatogr A 847:187–202

    Article  CAS  Google Scholar 

  • Hirai M, Nakayama R (1986) Haemodynamic effects of intra-arterial and intravenous administration of prostaglandin E1 in patients with peripheral arterial disease. Br J Surg 73:20–23

    Article  CAS  Google Scholar 

  • Hitchens M, Hand EL, Mulcahy WS (1981) Radioimmunoassay for angiotensin converting enzyme inhibitors. Ligand Q 4:43

    Google Scholar 

  • Horiuchi M, Fujimura K, Terashima T, Iso T (1982) Method for determination of angiotensin-converting enzyme activity in blood and tissue by high-performance liquid chromatography. Chromatogr 10:123–130

    Article  Google Scholar 

  • Jennings W (ed) (1987) Analytical gas chromatography. Academic, London

    Google Scholar 

  • Kaiser G, Ackermann R, Dieterle W, Dubois JP (1987) Determination of a new angiotensin converting enzyme inhibitor and its active metabolite in plasma and urine by gas chromatography-mass spectrometry. J Chromatogr 419:123–133

    Article  CAS  Google Scholar 

  • Kang W, Yun HY, Liu KH et al (2004) Determination of benidipine in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 805:311–314

    Article  CAS  Google Scholar 

  • Knapp DR (ed) (1979) Handbook of analytical derivatisation reactions. Wiley, New York, p 2

    Google Scholar 

  • Krebs R (1982) Effects of calcium entry antagonists in hypertension. Clin Exp Hypertens 4:272–284

    Google Scholar 

  • Langley MS, Sorkin EM (1989) Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs 37:669–699. Review

    Article  CAS  Google Scholar 

  • Le Guellec C, Bun H, Giocanti M, Durand A (1992) Determination of nifedipine in plasma by a rapid capillary gas chromatographic method. Biomed Chromatogr 6:20–23

    Article  Google Scholar 

  • Lee S, Casteel DA, Fleckenstein L (1997) Specific gas chromatographic analysis of diethylcarbamazine in human plasma using solid-phase extraction. J Chromatogr B Biomed Sci Appl 704:181–185

    Article  CAS  Google Scholar 

  • Miller JR Jr, Fleckenstein L (2001) Gas chromatographic assay of diethylcarbamazine in human plasma for application to clinical pharmacokinetic studies. J Pharm Biomed Anal 26:665–674

    Article  CAS  Google Scholar 

  • Mück W, Bode H (1994) Bioanalytics of nimodipine – an overview of methods. Pharmazie 49:130–139

    Google Scholar 

  • Nene S, Anjaneyulu B, Rajagopalan TG (1984) Determination of diethylcarbamazine in blood using gas chromatography with alkali flame ionization detection. J Chromatogr 308:334–340

    Article  CAS  Google Scholar 

  • Pommier F, Boschet F, Gosset G (2003) Quantitative determination of benazepril and benazeprilat in human plasma by gas chromatography-mass spectrometry using automated 96-well disk plate solid-phase extraction for sample preparation. J Chromatogr B 783:199–205

    Article  CAS  Google Scholar 

  • Porst H (1996) The rationale for prostaglandin E1 in erectile failure: a survey of worldwide experience. J Urol 155:802–815

    Article  CAS  Google Scholar 

  • Rämsch KD, Graefe KH, Scherling D et al (1986) Pharmacokinetics and metabolism of calcium-blocking agents nifedipine, nitrendipine, and nimodipine. Am J Nephrol 6(Suppl 1):73–80

    Google Scholar 

  • Ribeiro W, Muscará MN, Martins AR et al (1996) Bioequivalence study of two enalapril maleate tablet formulations in healthy male volunteers. Eur J Clin Pharmacol 50:399–405

    Article  CAS  Google Scholar 

  • Rimmer DA, Johnson PD, Brown RH (1996) Determination of phenoxy acid herbicides in vegetation, utilising high-resolution gel permeation chromatographic clean-up and methylation with trimethylsilyldiazomethane prior gas chromatographic analysis with mass-selective detection. J Chromatogr A 755:245–250

    Article  Google Scholar 

  • Schmidt D, Keller A (1985) Sensitive determination of the ACE-Inhibitor HOE 498 and its metabolites in human urine by capillary GC. Fresenius Z Anal Chem 320:731

    Article  Google Scholar 

  • Schug BS, Brendel E, Chantraine E et al (2002) The effect of food on the pharmacokinetics of nifedipine in two slow release formulations: pronounced lag-time after a high fat breakfast. Br J Clin Pharmacol 53:582–588

    Article  CAS  Google Scholar 

  • Schweer H, Meese CO, Watzer B, Seyberth HW (1994) Determination of prostaglandin E1 and its main plasma metabolites 15-keto-prostaglandin E0 and prostaglandin E0 by gas chromatography/negative ion chemical ionization triple-stage quadrupole mass spectrometry. Biol Mass Spectrom 23:165–170

    Article  CAS  Google Scholar 

  • Shah VP, Midha KK, Dighe S et al (1991) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies, conference report. Eur J Drug Metab Pharmacokinet 16:249–255

    Article  CAS  Google Scholar 

  • Shah VP, Midha KK, Findlay JW et al (2000) Bioanalytical method validation–a revisit with a decade of progress. Pharm Res 17:1551–1557

    Article  CAS  Google Scholar 

  • Shenoy RK, Dalia S, John A et al (1999) Treatment of the microfilaraemia of asymptomatic brugian filariasis with single doses of ivermectin, diethylcarbamazine or albendazole, in various combinations. Ann Trop Med Parasitol 93:643–651

    Article  CAS  Google Scholar 

  • Sioufi A, Pommier F, Kaiser G, Dubois JP (1988) Determination of benazepril, a new angiotensin-converting enzyme inhibitor and its active metabolite, benazeprilat, in plasma and urine by capillary gas chromatography-mass-selective detection. J Chromatogr 434:239–246

    Article  CAS  Google Scholar 

  • Stoepel K, Heise A, Kazda S (1981) Pharmacological studies of the antihypertensive effect of nitrendipine. Arzneimittel Forsch 31:2056–2061

    CAS  Google Scholar 

  • Testa R, Dolfini E, Reschiotto C et al (1979) GLC determination of nifedipine, a light sensitive drug, in plasma. Farmaco Ed Prat 34:463–473

    CAS  Google Scholar 

  • Tocco DJ, De Luna FA, Duncan AEW et al (1982) The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metab Disp 10:15–19

    CAS  Google Scholar 

  • US Center for Drug Evaluation and Research, US Center for Veterinary Medicine (2001) Guidance for industry, bioanalytical method validation. US Department of Health and Human Services, Food and drug Administration, Rockville, May 2001 (see www.fda.gov/cder/guidance/index.htm)

  • Venn RF (ed) (2000a) Principles and practice of bioanalysis. Taylor & Francis, London

    Google Scholar 

  • Venn RF (ed) (2000b) Principles and practice of bioanalysis. Taylor & Francis, London, p 131

    Book  Google Scholar 

  • Venn RF (ed) (2000c) Principles and practice of bioanalysis. Taylor & Francis, London, p 256

    Google Scholar 

  • Venn RF (ed) (2000d) Principles and practice of bioanalysis. Taylor & Francis, London, p 146

    Google Scholar 

  • Walle T, Ehrsson H, Bogentoft C, Dolby J (1972) Synthesis and structure of an enaminic bis(trifluoroacetyl) derivatives of desipramine. Acta Pharm Suecica 9:509–512

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schmidt .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schmidt, D. (2022). Bioanalytical Assays: Gas Chromatography (GC). In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation