Dynamical Modeling of Stem Cell Regeneration

  • Chapter
  • First Online:
Systems Biology
  • 1249 Accesses

Abstract

This chapter introduces a general mathematical framework to model the dynamics of stem cell regeneration. In general, homogeneous stem cell regeneration can be described by a \(\mathrm {G}_{0}\) phase model, which leads to a delay differential equation. To model heterogeneous stem cell regeneration, we generalize the \(\mathrm {G}_{0}\) model to include the epigenetic states of individual cells, which results in a differential-integral equation model that can be used to describe the evolution of the distribution of the epigenetic states of cells. In the second part, we apply the stem cell regeneration model to dynamic hematological diseases, which are diseases associated with the dysregulation of hematopoiesis. We show how various oscillation patterns of blood cell numbers arise from variance in the control parameters.

Can algebraic formulae tell us more than reasoning about the behavior of complex biological systems?

—Robert A. Weinberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehninger, A., Trumpp, A.: The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208, 421–428 (2011)

    Article  Google Scholar 

  2. Trumpp, A., Essers, M., Wilson, A.: Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10, 201–209 (2010)

    Article  Google Scholar 

  3. Lévesque, J.-P., Helwani, F.M., Winkler, I.G.: The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24, 1979–1992 (2010)

    Article  Google Scholar 

  4. Barker, N.N., van de Wetering, M.M., Clevers, H.H.: The intestinal stem cell. Genes. Dev. 22, 1856–1864 (2008)

    Article  Google Scholar 

  5. Leedham, S.J., Brittan, M., McDonald, S.A.C., Wright, N.A.: Intestinal stem cells. J. Cell Mol. Med. 9, 11–24 (2005)

    Google Scholar 

  6. van der Flier, L.G., Clevers, H.: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009)

    Google Scholar 

  7. Lander, A.D., Gokoffski, K.K., Wan, F.Y.M., Nie, Q., Calof, A.L.: Cell lineages and the logic of proliferative control. PLoS Biol. 7 (2009)

    Google Scholar 

  8. Burns, F.J., Tannock, I.F.: On the existence of a G0-phase in the cell cycle. Cell Prolif. 3, 321–334 (1970)

    Article  Google Scholar 

  9. Dingli, D., Traulsen, A., Pacheco, J.M.: Stochastic dynamics of hematopoietic tumor stem cells. Cell Cycle (Georgetown, Tex) 6, 461–466 (2007)

    Article  Google Scholar 

  10. Hu, G.M., Lee, C.Y., Chen, Y.-Y., Pang, N.N., Tzeng, W.J.: Mathematical model of heterogeneous cancer growth with an autocrine signalling pathway. Cell Prolif. 45, 445–455 (2012)

    Article  Google Scholar 

  11. Mackey, M.C.: Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51, 941–956 (1978)

    Article  Google Scholar 

  12. Mackey, M.C.: Cell kinetic status of haematopoietic stem cells. Cell Prolif. 34, 71–83 (2001)

    Article  Google Scholar 

  13. Mangel, M., Bonsall, M.B.: Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability. PLoS ONE 3 (2008)

    Google Scholar 

  14. Mangel, M., Bonsall, M.B.: Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to common lymphoid and myeloid progenitors. Theor. Biol. Med. Model. 10, 5–5 (2012)

    Article  Google Scholar 

  15. Rodriguez-Brenes, I., Komarova, N., Wodarz, D.: Evolutionary dynamics of feedback escape and the development of stem-cell–driven cancers. Proc. Natl. Acad. Sci. USA 108, 18983–18988 (2011)

    Article  Google Scholar 

  16. Traulsen, A., Lenaerts, T., Pacheco, J.M., Dingli, D.: On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population. J. R. Soc. Interface/the R. Soc. 10, 20120810–20120810 (2013)

    Article  Google Scholar 

  17. Zhou, D., Wu, D., Li, Z., Qian, M., Zhang, M.Q.: Population dynamics of cancer cells with cell state conversions. Quant. Biol. 1, 201–208 (2013)

    Article  Google Scholar 

  18. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., Huang, S.: Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008b)

    Article  Google Scholar 

  19. Dykstra, B., Kent, D., Bowie, M., McCaffrey, L., Hamilton, M., Lyons, K., Lee, S.-J., Brinkman, R., Eaves, C.: Long-term propagation of distinct hematopoietic differentiation programs in vivo. Stem Cell 1, 218–229 (2007)

    Google Scholar 

  20. Gibson, T.M., Gersbach, C.A.: Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment. Integr. Biol. (Camb) 7, 663–671 (2015)

    Article  Google Scholar 

  21. Hayashi, K., de Sousa Lopes, S.M.C., Tang, F., Surani, M.A.: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Stem Cell 3, 391–401 (2008)

    Google Scholar 

  22. Singer, Z.S., Yong, J., Tischler, J., Hackett, J.A., Altinok, A., Surani, M.A., Cai, L., Elowitz, M.B.: Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014)

    Article  Google Scholar 

  23. Zernicka-Goetz, M., Morris, S.A., Bruce, A.W.: Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat. Rev. Genet. 10, 467–477 (2009)

    Article  Google Scholar 

  24. Till, J.E., McCulloch, E.A., Siminovitch, L.: A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36 (1964)

    Article  MATH  Google Scholar 

  25. MacArthur, B.D.: Collective dynamics of stem cell populations. Proc. Natl. Acad. Sci. USA 111, 3653–3654 (2014)

    Article  Google Scholar 

  26. Lei, J., Levin, S.A., Nie, Q.: Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proc. Natl. Acad. Sci. USA 111, E880–E887 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Situ, Q., Lei, J.: A mathematical model of stem cell regeneration with epigenetic state transitions. MBE 14, 1379–1397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lei, J.: A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration. J. Theor. Biol. 492 (2020a)

    Google Scholar 

  29. Lei, J.: Evolutionary dynamics of cancer: from epigenetic regulation to cell population dynamics—mathematical model framework, applications, and open problems. Sci. China Math. 63, 411–424 (2020b)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lajtha, L.: On the concept of the cell cycle. J. Cell. Comp. Physiol. 60, 143 (1963)

    Google Scholar 

  31. Quastler, H.: The analysis of cell population kinetics. In: Lamerton, L.F., Fry, R. (eds.) Cell Proliferation. Blackwell Scientific Publications Oxford

    Google Scholar 

  32. Ornitz, D.M., Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2, reviews 3005.1–3005.12

    Google Scholar 

  33. Massague, J.: TGF\(\beta \) signalling in context. Nat. Rev. Mol. Cell. Biol. 13, 616–630 (2012)

    Article  Google Scholar 

  34. Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J.L., Heuchel, R., Itoh, S., Kawabata, N., Heldin, N.E., Heldin, C.H., tenDijke, P.: Identification of Smad7, a TGF beta-inducible antagonist of TGF-beta signalling. Nature 389, 631–635 (1997)

    Article  Google Scholar 

  35. Massagué, J.: The transforming growth factor-beta family. Annu. Rev. Cell Biol. 6, 597–641 (1990)

    Article  Google Scholar 

  36. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  37. Batlle, E., Massague, J.: Transforming growth factor-\(\beta \) signaling in immunity and cancer. Immunity 50, 924–940 (2019)

    Article  Google Scholar 

  38. Horn, L.A., Fousek, K., Palena, C.: Tumor plasticity and resistance to immunotherapy. Trends Cancer 6, 432–441 (2020)

    Article  Google Scholar 

  39. Bernard, S., Bélair, J., Mackey, M.C.: Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sanchez-Vega, F., Mina, M., Armenia, J., La, K.C., Dimitriadoy, S., Liu, D.L., Kantheti, H.S., Saghafinia, S., Daian, F., Gao, Q., Bailey, M.H., Liang, W.-W., Foltz, S.M., Shmulevich, I., Ding, L., Heins, Z., Gross, B., Zhang, H., Kundra, R., Bahceci, I., Dervishi, L., Dogrusoz, U., Zhou, W., Way, G.P., Greene, C.S., **ao, Y., Wang, C., Iavarone, A., Berger, A.H., Bivona, T.G., Lazar, A.J., Hammer, G.D., Giordano, T., Kwong, L.N., McArthur, G., Huang, C., Tward, A.D., Frederick, M.J., McCormick, F., Network, T.C.G.A.R., Caesar-Johnson, S.J., Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., Hutter, C.M., Sofia, H.J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J.C., Zhang, J.J., Chudamani, S., Liu, J., Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Cho, J., DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman, D.I., Kim, J., Lawrence, M.S., Lin, P., Meier, S., Noble, M.S., Saksena, G., Voet, D., Zhang, H., Bernard, B., Chambwe, N., Dhankani, V., Knijnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds, S., Thorsson, V., Zhang, W., Akbani, R., Broom, B.M., Hegde, A.M., Ju, Z., Kanchi, R.S., Korkut, A., Li, J., Liang, H., Ling, S., Liu, W., Lu, Y., Mills, G.B., Ng, K.-S., Rao, A., Ryan, M., Wang, J., Weinstein, J.N., Zhang, J., Abeshouse, A., Chakravarty, D., Chatila, W.K., de Bruijn, I., Gao, J., Gross, B.E., Heins, Z.J., La, K., Ladanyi, M., Luna, A., Nissan, M.G., Ochoa, A., Phillips, S.M., Reznik, E., Sander, C., Sheridan, R., Sumer, S.O., Sun, Y., Taylor, B.S., Wang, J., Anur, P., Peto, M., Spellman, P., Benz, C., Stuart, J.M., Wong, C.K., Yau, C., Hayes, D.N., Parker, J.S., Wilkerson, M.D., Ally, A., Balasundaram, M., Bowlby, R., Brooks, D., Carlsen, R., Chuah, E., Dhalla, N., Holt, R., Jones, S.J.M., Kasaian, K., Lee, D., Ma, Y., Marra, M.A., Mayo, M., Moore, R.A., Mungall, A.J., Mungall, K., Robertson, A.G., Sadeghi, S., Schein, J.E., Sipahimalani, P., Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A.C., Beroukhim, R., Cherniack, A.D., Cibulskis, C., Gabriel, S.B., Gao, G.F., Ha, G., Meyerson, M., Schumacher, S.E., Shih, J., Kucherlapati, M.H., Kucherlapati, R.S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M.S., Lai, P.H., Maglinte, D.T., Van Den Berg, D.J., Weisenberger, D.J., Auman, J.T., Balu, S., Bodenheimer, T., Fan, C., Hoadley, K.A., Hoyle, A.P., Jefferys, S.R., Jones, C.D., Meng, S., Mieczkowski, P.A., Mose, L.E., Perou, A.H., Perou, C.M., Roach, J., Shi, Y., Simons, J.V., Skelly, T., Soloway, M.G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Laird, P.W., Shen, H., Zhou, W., Bellair, M., Chang, K., Covington, K., Creighton, C.J., Dinh, H., Doddapaneni, H., Donehower, L.A., Drummond, J., Gibbs, R.A., Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., Lee, S., Lewis, L., Li, W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth, M., Shinbrot, E., Wang, L., Wang, M., Wheeler, D.A., **, L., Zhao, F., Hess, J., Appelbaum, E.L., Bailey, M., Cordes, M.G., Fronick, C.C., Fulton, L.A., Fulton, R.S., Kandoth, C., Mardis, E.R., McLellan, M.D., Miller, C.: Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018)

    Article  Google Scholar 

  41. Lei, J.: A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration. J. Theor. Biol. 492 (2020c)

    Google Scholar 

  42. Abkowitz, J., Holly, R., Hammond, W.P.: Cyclic hematopoiesis in dogs: studies of erythroid burst forming cells confirm and early stem cell defect. Exp. Hematol. 16, 941–945 (1988)

    Google Scholar 

  43. Boggs, D.R., Boggs, S.S., Saxe, D.F., Gress, L.A., Canfield, D.R.: Hematopoietic Stem Cells with high proliferative potential: assay of their concentraion in marrow by the frequency and duration of cure of W/Wv mice. J. Clin. Investig. 70, 242–253 (1982)

    Article  Google Scholar 

  44. Micklem, H.S., Lennon, J.E., Ansell, J.D., Gray, R.A.: Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose. Exp. Hematol. 15, 251–257 (1987)

    Google Scholar 

  45. Lei, J., Mackey, M.C.: Multistability in an age-structured model of hematopoiesis: cyclical neutropenia. J. Theor. Biol. 270, 143–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Colijn, C., Mackey, M.: A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237, 117–132 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  47. Probst, A.V., Dunleavy, E., Almouzni, G.: Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell. Biol. 10, 192–206 (2009)

    Article  Google Scholar 

  48. Wu, H., Zhang, Y.: Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014)

    Article  Google Scholar 

  49. Schepeler, T., Page, M.E., Jensen, K.B.: Heterogeneity and plasticity of epidermal stem cells. Development 141, 2559–2567 (2014)

    Article  Google Scholar 

  50. Takaoka, K., Hamada, H.: Origin of cellular asymmetries in the pre-implantation mouse embryo: a hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (2014)

    Google Scholar 

  51. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K., Surani, M.A.: mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009)

    Article  Google Scholar 

  52. Rotem, A., Ram, O., Shoresh, N., Sperling, R.A., Goren, A., Weitz, D.A., Bernstein, B.E.: Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015)

    Article  Google Scholar 

  53. Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S.R., Stegle, O., Reik, W., Kelsey, G.: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014)

    Article  Google Scholar 

  54. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA 105, 17256–17261 (2008a)

    Article  Google Scholar 

  55. Friedman, N., Cai, L., **e, X.S.: Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97 (2006)

    Google Scholar 

  56. Arai, F., Stumpf, P.S., Ikushima, Y.M., Hosokawa, K., Roch, A., Lutolf, M.P., Suda, T., MacArthur, B.D.: Machine learning of hematopoietic stem cell divisions from paired daughter cell expression profiles reveals effects of aging on self-renewal. Cell Syst. 11, 640–652.e5 (2020)

    Article  Google Scholar 

  57. Fischer, D.S., Fiedler, A.K., Kernfeld, E.M., Genga, R.M.J., Bastidas-Ponce, A., Bakhti, M., Lickert, H., Hasenauer, J., Maehr, R., Theis, F.J.: Inferring population dynamics from single-cell RNA-sequencing time series data. Nat. Biotechnol. 37, 461–468 (2019)

    Article  Google Scholar 

  58. Woodworth, M.B., Girskis, K.M., Walsh, C.A.: Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244 (2017)

    Article  Google Scholar 

  59. Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., Laurenti, E., Dunant, C.F., McPherson, J.D., Stein, L.D., Dror, Y., Dick, J.E.: Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116–aab2116 (2016)

    Google Scholar 

  60. Wu, C., Li, B., Lu, R., Koelle, S.J., Yang, Y., Jares, A., Krouse, A.E., Metzger, M., Liang, F., Loré, K., Wu, C.O., Donahue, R.E., Chen, I.S.Y., Weissman, I., Dunbar, C.E.: Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Stem Cell 14, 486–499 (2014)

    Google Scholar 

  61. Perié, L., Hodgkin, P.D., Naik, S.H., Schumacher, T.N., de Boer, R.J., Duffy, K.R.: Determining lineage pathways from cellular barcoding experiments. Cell Rep. 6, 617–624 (2014)

    Article  Google Scholar 

  62. Bocharov, G., Quiel, J., Luzyanina, T., Alon, H., Chiglintsev, E., Chereshnev, V., Meier-Schellersheim, M., Paul, W.E., Grossman, Z.: Feedback regulation of proliferation versus differentiation rates explains the dependence of CD4 T-cell expansion on precursor number. Proc. Nat. Acad. Sci. 108, 3318–3323 (2011)

    Article  Google Scholar 

  63. Vermeulen, L., Snippert, H.J.: Stem cell dynamics in homeostasis and cancer of the intestine. Nat. Rev. Cancer 14, 468–480 (2014)

    Article  Google Scholar 

  64. Knapp, D.J., Eaves, C.J.: Control of the hematopoietic stem cell state. Nat. Publ. Group 24, 3–4 (2014)

    Google Scholar 

  65. Lugli, E., Dominguez, M.H., Gattinoni, L., Chattopadhyay, P.K., Bolton, D.L., Song, K., Klatt, N.R., Brenchley, J.M., Vaccari, M., Gostick, E., Price, D.A., Waldmann, T.A., Restifo, N.P., Franchini, G., Roederer, M.: Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013)

    Google Scholar 

  66. D’Urso, A., Brickner, J.H.: Epigenetic transcriptional memory. Curr. Genet. 63, 435–439 (2017)

    Article  Google Scholar 

  67. Su, Y., Wei, W., Robert, L., Xue, M., Tsoi, J., Garcia-Diaz, A., Homet Moreno, B., Kim, J., Ng, R.H., Lee, J.W., Koya, R.C., Comin-Anduix, B., Graeber, T.G., Ribas, A., Heath, J.R.: Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl. Acad. Sci. USA 114, 13679–13684 (2017)

    Article  Google Scholar 

  68. Macaulay, I.C., Svensson, V., Labalette, C., Ferreira, L., Hamey, F., Voet, T., Teichmann, S.A., Cvejic, A.: Single-Cell RNA-Sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14, 1–13 (2016)

    Google Scholar 

  69. Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin, E., Guillemin, A., Papili Gao, N., Gunawan, R., Cosette, J., Arnaud, O., Kupiec, J.-J., Espinasse, T., Gonin-Giraud, S., Gandrillon, O.: Single-Cell-Based analysis highlights a surge in Cell-to-Cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol. 14 (2016)

    Google Scholar 

  70. Joost, S., Zeisel, A., Jacob, T., Sun, X., La Manno, G., Lönnerberg, P., Linnarsson, S., Kasper, M.: Single-Cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237.e9 (2016)

    Article  Google Scholar 

  71. Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C., Lander, E.S.: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2010)

    Article  Google Scholar 

  72. Furness, S.G.B., McNagny, K.: Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. IR 34, 13–32 (2006)

    Article  Google Scholar 

  73. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., Huang, S.: Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008a)

    Article  Google Scholar 

  74. Li, Q., Wennborg, A., Aurell, E., Dekel, E., Zou, J.-Z., Xu, Y., Huang, S., Ernberg, I.: Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc. Natl. Acad. Sci. USA 113, 2672–2677 (2016)

    Article  Google Scholar 

  75. Weston, W., Zayas, J., Perez, R., George, J., Jurecic, R.: Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci. Rep. 4, 5199–5199 (2014)

    Article  Google Scholar 

  76. Ren, X., Kang, B., Zhang, Z.: Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 19, 211 (2018)

    Article  Google Scholar 

  77. Stuart, T., Satija, R.: Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019)

    Article  Google Scholar 

  78. Liu, J., Song, Y., Lei, J.: Single-Cell entropy to quantify the cellular order parameter from Single-Cell RNA-Seq data. Biophys. Rev. Lett. 15, 35–49 (2020)

    Article  Google Scholar 

  79. Ye, Y., Yang, Z., Lei, J.: Using single-cell entropy to describe the dynamics of reprogramming and differentiation of induced pluripotent stem cells. Int. J Mod. Phys. B 34, 2050288(2020)

    Google Scholar 

  80. Glass, L., Mackey, M.C.: From Clocks to Chaos-the Rhythms of Life. Princeton University Press, Princeton (1988)

    Google Scholar 

  81. Foley, C., Mackey, M.C.: Dynamic hematological disease: a review. J. Math. Biol. 58, 285–322 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  82. Dale, D.C., Mackey, M.C.: Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull. Math. Biol. 77, 739–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  83. Colijn, C., Mackey, M.: A mathematical model of hematopoiesis: II cyclical neutropenia. J. Theor. Biol. 237, 133–146 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hearn, T., Haurie, C., Mackey, M.C.: Cyclical neutropenia and the peripheral control of white blood cell production. J. Theor. Biol. 192, 167–181 (1998)

    Article  Google Scholar 

  85. Haurie, C., Dale, D.C., Mackey, M.C.: Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patients before and during treatment with G-CSF. Exp. Hematol. 27, 401–409 (1999)

    Article  Google Scholar 

  86. Fortin, P., Mackey, M.C.: Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications. Br. J. Haematol. 104, 336–345 (1999)

    Article  Google Scholar 

  87. Mackey, M.C.: Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull. Math. Biol. 41, 829–834 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  88. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  MATH  Google Scholar 

  89. Swinburne, J.L., Mackey, M.C.: Cyclical thrombocytopenia: characterization by spectral analysis and a review. J. Theor. Med. 2, 81–91 (2000)

    Article  MATH  Google Scholar 

  90. Apostu, R., Mackey, M.C.: Understanding cyclical thrombocytopenia: a mathematical modeling approach. J. Theor. Biol. 251, 297–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  91. Langlois, G.P., Arnold, D.M., Potts, J., Leber, B., Dale, D.C., Mackey, M.C.: Cyclic thrombocytopenia with statistically significant neutrophil oscillations. Clin. Case Rep. 19, 53 (2018)

    Google Scholar 

  92. Mackey, M.C.: Periodic hematological disorders: quintessential examples of dynamical diseases. Chaos 30, 063123 (2020)

    Google Scholar 

  93. Horwitz, M., Benson, K.F., Person, R.E., Aprikyan, A.G., Dale, D.C.: Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat. Genet. 23, 433–436 (1999)

    Article  Google Scholar 

  94. Haurie, C., Dale, D.C., Rudnicki, R., Mackey, M.C.: Modeling complex neutrophil dynamics in the grey collie. J. Theor. Biol. 204, 505–519 (2000)

    Google Scholar 

  95. Gill, M., Ockelford, P., Morris, A., Bierre, T., Kyle, C.: Diagnostic handbook-the interpretation of laboratory tests. Diagnostic Medlab, Auckland (2000)

    Google Scholar 

  96. Haurie, C., Person, R., Dale, D.C., Mackey, M.C.: Hematopoietic dynamics in grey collies. Exp. Hematol. 27, 1139–1148 (1999)

    Article  Google Scholar 

  97. Beutler, E., Lichtman, M., Coller, B., Kipps, T.: Williams Hematology. McGraw-Hill, New York (1995)

    Google Scholar 

  98. Engstrom, K., Lundquist, A., Söderströ, N.: Periodic thrombocytopenia or tidal platelet dysgenesis in man. Scand. J. Haematol. 3, 290–292 (1966)

    Google Scholar 

  99. Ranlov, P., Videbaek, A.: Cyclic haemolytic anaemia synchronous with Pel-Ebstein fever in a case of Hodgkin’s disease. Acta Medica Scandinavica 174, 583–588 (1963)

    Article  Google Scholar 

  100. Gordon, R.R., Varadi, S.: Congenital hypoplastic anemia (pure red-cell anemia) with periodic erythroblastopenia. Lancet 1, 296–299 (1962)

    Article  Google Scholar 

  101. Gurney, C.W., Simmons, E.L., Gaston, E.O.: Cyclic erythropoiesis in W/Wv mice following a single small dose of \(^{89}\)Sr. Exp. Hematol. 9, 118–122 (1981)

    Google Scholar 

  102. Gibson, C.M., Gurney, C.W., Gaston, E.O., Simmons, E.L.: Cyclic erythropoiesis in the S1/S1d mouse. Exp. Hematol. 12, 343–348 (1984)

    Google Scholar 

  103. Gibson, C.M., Gurney, C.W., Simmons, E.L., Gaston, E.O.: Further studies on cyclic erythropoiesis in mice. Exp. Hematol. 13, 855–860 (1985)

    Google Scholar 

  104. Vácha, J., Znoji, V.: Application of a mathematical model of erythropoiesis to the process of recovery after acute X-irradiation of mice. Biofizika 20, 872–879 (1975)

    Google Scholar 

  105. Vácha, J.: Postirradiational oscillations of erythropoiesis in mice. Acta Sc. Nat. Brno. 16, 1–52 (1982)

    Google Scholar 

  106. Orr, J.S., Kirk, J., Gray, K.G., Anderson, J.R.: A study of the interdependence of red cell and bone marrow stem cell populations. Br. J.Haematol. 15, 23–24 (1968)

    Article  Google Scholar 

  107. Munje, C., Copland, M.: Exploring stem cell heterogeneity in Chronic Myeloid Leukemia. Trends Cancer 4, 167–169 (2018)

    Article  Google Scholar 

  108. Melo, J.V.: The diversity of BCR-ABL fusion proteins and their relationship to Leukemia phenotype. Blood 88, 2375–2384 (1996)

    Article  Google Scholar 

  109. Henderson, E.S., Lister, T.A., Greaves, M.F. (eds.): Leukemia. Saunders, Philadelphia (1996)

    Google Scholar 

  110. Mackey, M.C., Bélair, J.: Cell replication and control. In: Beuter, A., Glass, L., Mackey, M.C., Titcombe, M.S. (eds.) Nonlinear dynamics in physiology and medicine. Springer, New York (2003)

    Google Scholar 

  111. Hoffbrand, A.V., Pettit, J.E., Moss, P.A.: Essential Haematology, 4th edn. Blackwell Science, Milan (2011)

    Google Scholar 

  112. Mahaffy, J.M., Bélair, J., Mackey, M.C.: Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J. Theor. Biol. 190, 135–146 (1998)

    Article  Google Scholar 

  113. Bélair, J., Mackey, M.C.: A model for the regulation of mammalian platelet. Ann. N. Y. Acad. Sci. 504, 280–282 (1987)

    Article  Google Scholar 

  114. Adamson, J.W.: The relationship of erythropoietin and iron metabolism to red blood cell production in humans. Semin. Oncol. 2, 9–15 (1994)

    Google Scholar 

  115. Price, T.H., Chatta, G.S., Dale, D.C.: Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88, 335–340 (1996)

    Article  Google Scholar 

  116. Ratajczak, M.Z.M., Ratajczak, J.J., Marlicz, W.W., Pletcher, C.H.C., Machalinski, B.B., Moore, J.J., Hung, H.H., Gewirtz, A.M.A.: Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. Br. J. Haematol. 98, 8–17 (1997)

    Article  Google Scholar 

  117. Pujo-Menjouet, L.: Blood cell dynamics: half of a century of modelling. Math. Model. Nat. Phenom. 11, 92–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  118. Colijn, C., Foley, C., Mackey, M.C.: G-CSF treatment of canine cyclical neutropenia: a comprehensive mathematical model. Exp. Hematol. 35, 898–907 (2007)

    Article  Google Scholar 

  119. Zhuge, C., Mackey, Lei, J.: Origins of oscillation patterns in cyclical thrombocytopenia. J. Theor. Biol. 462, 432–445 (2018)

    Google Scholar 

  120. Merchant, A.A., Singh, A., Matsui, W., Biswal, S.: The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival indepently of ROS levels. Blood 118, 6572–6579 (2011)

    Article  Google Scholar 

  121. Leavey, P.J., Sellins, K.S., Thurman, G., Elzi, D., Hiester, A., Silliman, C.C., Zerbe, G., Cohen, J.J., Ambruso, D.R.: In vivo treatment with granulocyte colony-stimulating factor results in divergent effects on neutrophil functions measured in vitro. Blood 92, 4366–4374 (1998)

    Article  Google Scholar 

  122. Brooks, G., Langlois, G.P., Lei, J., Mackey, M.C.: Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in sha** the response. J. Theor. Biol. 315, 97–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  123. Foley, C., Mackey, M.C.: Mathematical model for G-CSF administration after chemotherapy. J. Theor. Biol. 257, 27–44 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  124. Hannun, Y.A.: Apoptosis and the dilemma of cancer chemotherapy. Blood 89, 1845–1853 (1997)

    Article  Google Scholar 

  125. Häcker, S., Karl, S., Mader, I., Cristofanon, S., Schweitzer, T., Krauss, J., Rutkowski, S., Debatin, K.-M., Fulda, S.: Histone deacetylase inhibitors prime medulloblastoma cells for chemotherapy-induced apoptosis by enhancing p53-dependent Bax activation. Oncogene 30, 2275–2281 (2011)

    Article  Google Scholar 

  126. Zhuge, C., Lei, J., Lei, J., Mackey, M.C.: Neutrophil dynamics in response to chemotherapy and G-CSF. J. Theor. Biol. 293, 111–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  127. Fetterly, G.J., Grasela, T.H., Sherman, J.W., Dul, J.L., Grahn, A., Lecomte, D., Fiedler-Kelly, J., Damjanov, N., Fishman, M., Kane, M.P., Rubin, E.H., Tan, A.R.: Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin. Cancer Res. 14, 5856–5863 (2008)

    Article  Google Scholar 

  128. Mackey, M.C., Glisovic, S., Leclerc, J.-M., Pastore, Y., Kra**ovic, M., Craig, M.: The timing of cyclic cytotoxic chemotherapy can worsen neutropenia and neutrophilia. Br. J. Clin. Pharmacol. 13

    Google Scholar 

  129. Ma, S., Zhu, K., Lei, J.: Bistability and state transition of a delay differential equation model of neutrophil dynamics. Int. J. Bifurc. Chaos 25, 1550017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  130. Wahlberg, P., Nyman, D., Ekelund, P., Carlsson, S.A., Granlund, H.: Cyclical thrombocytopenia with remission during lynestrenol treatment in a woman. Ann. Clin. Res. 9, 356–358 (1977)

    Google Scholar 

  131. Sekine, T., Takagi, M., Uemura, Y., Mori, Y., Wada, H., Minami, N., Deguchi, K., Shirakawa, S.: A cyclic thrombocytopenia associated with Sjögren syndrome. Rinsho Ketsueki 30, 1021–1026 (1989)

    Google Scholar 

  132. Kosugi, S., Tomiyama, Y., Shiraga, M., Kashiwagi, H., Nakao, H., Kanayama, Y., Kurata, Y., Matsuzawa, Y.: Cyclic thrombocytopenia associated with IgM anti-GPllb-Illa autoantibodies. Br. J. Haematol. 88, 809–815 (1994)

    Article  Google Scholar 

  133. Pavord, S., Sivakumaran, M., Furber, P., Mitchell, V.: Cyclical thrombocytopenia as a rare manifestation of myelodysplatic syndrome. Clin. Lab. Haematol. 18, 221–223 (1996)

    Article  Google Scholar 

  134. Nagasawa, T., Hasegawa, Y., Shimizu, S., Kawashima, Y., Nishimura, S., Suzukawa, K., Mukai, H., Hori, M., Komeno, T., Kojima, H., Ninomiya, H., Tahara, T., Abe, T.: Serum thrombopoietin level is mainly regulated by megakaryocyte mass rather than platelet mass in human subjects. Br. J. Haematol. 101, 242–244 (1998)

    Article  Google Scholar 

  135. Santillan, M., Mahaffy, J.M., Bélair, J., Mackey, M.C.: Regulation of platelet production: the normal response to perturbation and cyclical platelet disease. J. Theor. Biol. 206, 585–603 (2000)

    Article  Google Scholar 

  136. Langlois, G.P., Craig, M., Humphries, A.R., Mackey, M.C., Mahaffy, J.M., Bélair, J., Moulin, T., Sinclair, S.R., Wang, L.: Normal and pathological dynamics of platelets in humans. J. Math. Biol. 75, 1411–1462 (2017)

    Google Scholar 

  137. Crawford, J., Dale, D.C., Lyman, G.H.: Chemotherapy-induced: risks, consequences, and new directions for its management. Cancer 100, 228–237 (2003)

    Article  Google Scholar 

  138. Thatcher, N., Girling, D.J., Hopwood, P., Sambrook, R.J., Qian, W., Stephens, R.J.: Improving survival without reducing quality of life in small-cell lung cancer patients by increasing the dose-intensity of chemotherapy with granulocyte colony-stimulating factor support: results of a British Medical Research Council Multicenter Randomized Trial. Medical Research Council Lung Cancer Working Party. J. Clin. Oncol. 18, 395–404 (2000)

    Article  Google Scholar 

  139. Tjan-Heijnen, V.C.G., Wagener, D.J.T., Postmus, P.E.: An analysis of chemotherapy dose and dose-intensity in small-cell lung cancer: lessons to be drawn. Ann. Oncol. 13, 1519–1530 (2002)

    Article  Google Scholar 

  140. Morstyn, G., Campbell, L., Lieschke, G., Layton, J., Maher, D., O’Connor, M., Green, M., Sheridan, W., Vincent, M., Alton, K., Souza, L., McGrath, K., Fox, R.: Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy. J. Clin. Oncol. 7, 1554–1562 (1989)

    Google Scholar 

  141. Meishenberg, B.R., Davis, T.A., Melaragno, A.J., Stead, R., Monroy, R.L.: A comparison of therapeutic schedules for administering granulocyte colony-stimulating factor to nonhuman primates after high-dose chemotherapy. Blood 79, 2267–2272 (1992)

    Article  Google Scholar 

  142. Butler, R.D., Waites, T.M., Lamar, R.E., Hainsworth, J.D., Greco, F.A., Johnson, D.H.: Timing of G-CSF administration during intensive chemotherapy for breast cancer (abstract). Am. Soc. Clin. Oncol. 11, 1411 (1992)

    Google Scholar 

  143. Craig, M., Humphries, A.R., Nekka, F., Bélair, J., Li, J., Mackey, M.C.: Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimise neutropenia. J. Theor. Biol. 385, 77–89 (2015)

    Article  MATH  Google Scholar 

  144. Skeel, R.T., (ed.): Handbook of Cancer Chemotherapy. Lippincott Williams & Wilkins (2007)

    Google Scholar 

  145. Clark, O.A., Lyman, G.H., Castro, A.A., Clark, L.G., Djulbegovic, B.: Colony-stimulating factors for chemotherapy-induced febrile neutrophenia: a meta-analysis of randomized controlled trails. J. Clin. Oncol. 23, 4198–4214 (2005)

    Article  Google Scholar 

  146. Bennett, C.L., Weeks, J.A., Somerfield, M.R., et al.: Use of hematopoietic colony-stimulating factors: comparision of the 1994 and 1997 American Society of Clinical Oncology surveys regarding ASCO clinical practice guidelines. J. Clin. Oncol. 17, 3676–3681 (1999)

    Article  Google Scholar 

  147. Craig, M., Humphries, A.R., Mackey, M.C.: A mathematical model of granulopoiesis incorporating the negative feedback dynamics and Kinetics of G-CSF/Neutrophil binding and internalization. Bull. Math. Biol. 78, 2304–2357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **zhi Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, J. (2021). Dynamical Modeling of Stem Cell Regeneration. In: Systems Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73033-8_6

Download citation

Publish with us

Policies and ethics

Navigation