Closing the Carbon Cycle

  • Chapter
  • First Online:
Carbon Dioxide Utilization to Sustainable Energy and Fuels

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 1343 Accesses

Abstract

The energy demand of the world can be fulfilled by burning fossil fuels such as natural gas, petroleum, and coal on a large scale. However, the burning of these energy resources produces a large amount of carbon dioxide in the atmosphere, which is outpacing the natural carbon cycle and changes the natural environment. Recently, the atmospheric concentration of carbon dioxide has surpassed the four hundred parts per million marks. Despite producing much energy, these fossil fuel reserves are limited. We must capture carbon dioxide to get our environment neat and clean. For capturing carbon dioxide, various technologies such as adsorption on solids, separation of the membrane, and absorption into liquids could be utilized after knowing some parameters like the existence of impurities, temperature, the concentration of carbon dioxide, etc. The extracted carbon dioxide can be utilized for various applications such as the conversion of carbon dioxide into dimethyl ethanol, methanol, and hydrocarbons. There are various types of energy resources that we can utilize instead of carbon-emitting energy resources. By using such type of resources, we can make our environment neat and clean. While doing so, we can capture carbon more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49

    Article  Google Scholar 

  • Aikins KA, Choi JM, (2012) Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea. Energy 47:77–82

    Google Scholar 

  • Alam F, Alam Q, Reza S, Khurshid-ul-Alam SM, Saleque K, Chowdhury H (2017) A review of hydropower projects in Nepal. Energ Procedia 110:581–585

    Article  Google Scholar 

  • Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) Fuel 87:1014–1030

    Article  CAS  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(1):24–31

    Article  CAS  Google Scholar 

  • Azar C, Lindgren K, Andersson BA (2003) Energ Pol 31:961–976

    Article  Google Scholar 

  • Bahadori A, Zendehboudi S, Zahedi G (2013) A review of geothermal energy resources in Australia: current status and prospects. Renew Sustain Energ Rev 21:29–34

    Article  Google Scholar 

  • Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energ Rev 6:3–65

    Article  Google Scholar 

  • Blaschke T, Biberacher M, Gadocha S, Schardinger I (2013) Energy landscapes: meeting energy demands and human aspirations. Biomass Bioenerg 55:3–16

    Article  Google Scholar 

  • Bossel U (2006) Proc IEEE 94:1826–1837

    Article  CAS  Google Scholar 

  • Bridgwater AV (1994) Appl Catal 116:5–47

    Article  CAS  Google Scholar 

  • Bromberg L, Cheng WK (2010) Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation. Cambridge, MA: Sloan Automotive Laboratory, Massachusetts Institute of Technology

    Google Scholar 

  • Bromberg L, Cohn DR (2010) Heavy duty vehicles using clean, high efficiency alcohol engines, PSFC/JA-10-43. MIT, Cambridge

    Google Scholar 

  • Bulushev DA, Ross JRH (2011) Catal Today 171:1–13

    Article  CAS  Google Scholar 

  • Chala GT, Guangul FM,  Sharma R (2019) Biomass energy in malaysia-A SWOT analysis. In 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT) (pp 401–406). IEEE

    Google Scholar 

  • Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS applied materials & interfaces 5(15): 6937–6945

    Google Scholar 

  • Chmielniak T, Sciazko M (2003) Appl Energ 74:393–403

    Article  CAS  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, **oud K (2011) Bioenergy. In: Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change (pp 209-332). Cambridge University Press.

    Google Scholar 

  • Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Environ Sci Technol 45:2420–2427

    Article  CAS  PubMed  Google Scholar 

  • Didas SA, Kulkarni A, Sholl DS, Jones CW (2012) Chemsuschem 5:2058–2064

    Article  CAS  PubMed  Google Scholar 

  • Dongmei Z, Yuchen Z, Xu Z (2011) Research on wind power forecasting in wind farms. In 2011 IEEE Power Engineering and Automation Conference (Vol. 1, pp 175–178). IEEE

    Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Kadner S, Zwickel T, Matschoss P (Eds.) (2011) Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Erinofiardi PG, Date A, Akbarzadeh A, Bismantolo P, Suryono AF, Mainil AK, Nuramal A (2017) A review on micro hydropower in Indonesia. Energ Procedia 110:316–321

    Article  Google Scholar 

  • de Faria FA, Alex Davis M, Severnini E, Jaramillo P (2017) The local socio-economic impacts of large hydropower plant development in a develo** country. Energ Econ 67:533–544

    Article  Google Scholar 

  • Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) J Am Chem Soc 133:20164–20167

    Article  CAS  PubMed  Google Scholar 

  • Goeppert A, Czaun M, Prakash GS, Olah GA (2012) Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energ Environ Sci 5(7):7833–7853

    Article  CAS  Google Scholar 

  • Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2014) Chem SusChem 7:1386–1397

    CAS  Google Scholar 

  • Goldemberg J (2001) World energy assessment. Energ Challenge sustain

    Google Scholar 

  • Gray CL Jr, Alson JA (1985) Moving America to Methanol. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Guangul FM,  Chala GT (2019) Solar energy as renewable energy source: SWOT analysis. In 2019 4th MEC international conference on big data and smart city (ICBDSC) (pp 1–5). IEEE

    Google Scholar 

  • Hamelinck CN, Faaij APC (2002) J Power Sour 111:1–22

    Article  CAS  Google Scholar 

  • Harkin T, Hoadley A, Hooper B (2010) Reducing the energy penalty of CO2 capture and compression using pinch analysis. J Clean Prod 18(9):857–866

    Article  CAS  Google Scholar 

  • He H, Li W, Zhong M, Konkolewicz D, Wu D, Yaccato K, Rappold T, Sugar G, David NE, Matyjaszewski K (2013) Energ Environ Sci 6:488–493

    Article  CAS  Google Scholar 

  • Hepbasli A, Ozgener L (2004) Development of geothermal energy utilization in Turkey: a review. Renew Sustain Energ Rev 8(5):433–460

    Article  Google Scholar 

  • Hidrovo B, Andrei JU, Amaya M-G (2017) Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renew Energ 112:209–221

    Article  Google Scholar 

  • Huckerby J, Jeffrey H, Jay B (2011) An international vision for ocean energy (Phase 1)

    Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2006) Clim Change 74:17–45

    Article  CAS  Google Scholar 

  • Kemp IC (2011) Pinch analysis and process integration: a user guide on process integration for the efficient use of energy. Elsevier

    Google Scholar 

  • Khoo HH, Tan RBH (2006) Energ Fuels 20:1914–1924

    Article  CAS  Google Scholar 

  • Kocaman AS, Modi V (2017) Value of pumped hydro storage in a hybrid energy generation and allocation system. Appl Energ 205:1202–1215

    Article  Google Scholar 

  • Kohl WL (1990) Methanol as an alternative fuel choice: an assessment

    Google Scholar 

  • Kumar A, Khan MZU, Pandey B, Mekhilef S (2018) Wind energy: a review paper. Gyancity J Eng Technol 4(2):29–37

    Article  Google Scholar 

  • Kuo CR, Hsu SW, Chang KH, Wang CC (2011) Analysis of a 50 kW organic Rankine cycle system. Energ 6(10):5877–5885

    Article  Google Scholar 

  • Lackner KS (2009) Eur Phys J Spec Top 176:93–106

    Article  Google Scholar 

  • Lackner KS (2010) Washing carbon out of the air. Sci Am 302(6):66–71

    Article  CAS  PubMed  Google Scholar 

  • Larson ED (1993) Technology for electricity and fuels from biomass. Annu Rev Energ Environ 18(1):56–7630

    Article  Google Scholar 

  • Lazkano I, Nøstbakken L, Pelli M (2017) From fossil fuels to renewables: the role of electricity storage. Eur Econ Rev 99:113–129

    Article  Google Scholar 

  • Li K, Bian H, Liu C, Zhang D, Yang Y (2015) Comparison of geothermal with solar and wind power generation systems. Renew Sustain Energ Rev 42:1464–1474

    Article  CAS  Google Scholar 

  • Li T, Zhu J, Zhang W (2012) Cascade utilization of low temperature geothermal water in oilfield combined power generation, gathering heat tracing and oil recovery. Appl Therm Eng 40:27–35

    Article  Google Scholar 

  • Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93

    Article  Google Scholar 

  • Lund JW, Freeston DH, Boyd TL(2010) Direct utilization of geothermal energy 2010 worldwide review. Proceedings World Geothermal Congress, Bali, Indonesia, 25–29 April 2010, 1–23

    Google Scholar 

  • Ma’arof MIN, Chala GT, Ravichanthiran S (2018) A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices. Int J Mech Technol 9(9):98–105

    Google Scholar 

  • MacElroy JD (2016) Closing the carbon cycle through rational use of carbon-based fuels. Ambio 45(1):5–14

    Article  CAS  Google Scholar 

  • Magagna D, MacGillivray A, Jeffrey H, Hanmer, C, Raventos A, Badcock-Broe A, Tzimas E (2014) Wave and Tidal Energy Strategic Technology Agenda, published by SI Ocean

    Google Scholar 

  • Mahmoudkhani M, Keith DW (2009) Int J Greenhouse Gas Control 3:376–384

    Article  CAS  Google Scholar 

  • Mahmoudkhani M, Heidel KR, Ferreira JC, Keith DW, Cherry RS (2009) Energ Procedia 1:1535–1542

    Article  CAS  Google Scholar 

  • Manzano-Agugliaro F, Taher M, Zapata-Sierra A, Juaidi A, Montoya FG (2017) An overview of research and energy evolution for small hydropower in Europe. Renew Sustain Energ Rev 75:476–489

    Article  Google Scholar 

  • McGrath KM, Prakash GKS, Olah GA (2004) J Ind Eng Chem 10:1063–1080

    CAS  Google Scholar 

  • Meth S, Goeppert A, Prakash GKS, Olah GA (2012) Energ Fuels 26:3082–3090

    Article  CAS  Google Scholar 

  • Milne TA, Evans RJ, Abatzaglou N (1998) Biomass gasifier''Tars'': their nature, formation, and conversion

    Google Scholar 

  • Moffat AS (1991) Science 251:514–515

    Article  Google Scholar 

  • Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881–12898

    Article  CAS  PubMed  Google Scholar 

  • Ortiz FG, Serrera A, Galera S, Ollero P (2013) Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel 105:739–751

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, van Ypserle JP (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p 151). Ipcc

    Google Scholar 

  • Pielke RA Jr (2009) Environ Sci Pol 12:216–225

    Article  CAS  Google Scholar 

  • Ranjan M, Herzog HJ (2011) Energ Procedia 4:2869–2876

    Article  CAS  Google Scholar 

  • Reed TB, Lerner RM (1973) Science 182:1299

    Article  CAS  PubMed  Google Scholar 

  • Reschetilowski W (2013) Russ Chem Rev 82:624–634

    Article  Google Scholar 

  • Rifkin J (2002) The hydrogen economy. Tarcher/Putnam, New York

    Google Scholar 

  • Rosillo-Calle F (2006) Energy technologies. In: Biomass energy, in Landolf-Bornstein handbook, vol 3. Springer, Germany. https://doi.org/10.1007/10858992_13

  • Sculley JP, Zhou HC (2012) Enhancing amine-supported materials for ambient air capture. Angew Chem Int Ed 51(51):12660–12661

    Article  CAS  Google Scholar 

  • Semelsberger TA, Borup RL, Greene HL (2006) J Power Sour 156:497–511

    Article  CAS  Google Scholar 

  • Sideratos G, Hatziargyriou ND (2007) An advanced statistical method for wind power forecasting. IEEE Trans power syst 22(1):258–265

    Article  Google Scholar 

  • Simon AJ, Kaahaaina NB, Friedmann SJ, Aines RD (2011) Energ Procedia 4:2893–2900

    Article  Google Scholar 

  • Specht M, Bandi A (1999) The'methanol cycle'-sustainable supply of liquid fuels; Der''Methanol-Kreislauf''-nachhaltige Bereitstellung fluessiger Kraftstoffe

    Google Scholar 

  • Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. Encycl Phy Sci Technol 15(1):23–756

    Google Scholar 

  • Stolaroff JK, Keith DW, Lowry GV (2008) Environ Sci Technol 42:2728–2735

    Article  CAS  PubMed  Google Scholar 

  • Temchin J (2003) Analysis of market characteristics for conversion of liquid fueled turbines to methanol prepared for the methanol foundation and methanex by electrotek concepts

    Google Scholar 

  • Unverdi M, Cerci Y (2013) Performance analysis of Germencik geothermal power plant. Energ 52:192–200

    Article  Google Scholar 

  • Wang X, Guo P, Huang X (2011) A review of wind power forecasting models. Energ procedia 12:770–778

    Article  Google Scholar 

  • Wang T, Lackner KS, Wright AB (2013) Phys Chem Chem Phys 15:504–514

    Article  CAS  PubMed  Google Scholar 

  • Williams RH (1995) Energ Sustain Dev 1:18–34

    Article  Google Scholar 

  • Yaakob OB, Ahmed YM, Elbatran AH, Shabara HM (2014) A review on micro hydro gravitational vortex power and turbine systems. Jurnal Teknologi 69(7):1–7

    Article  Google Scholar 

  • Yang W (2013) Experimental performance analysis of a direct-expansion ground source heat pump in **angtan, China. Energ 59:334–339

    Article  Google Scholar 

  • Zeman F (2007) Environ Sci Technol 41:7558–7563

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Kaiyong Hu, **nli Lu, Huang X, Liu K, **ujie Wu (2015) A review of geothermal energy resources, development, and applications in China: current status and prospects. Energy 93:466–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Mahajan, P., Arya, S. (2022). Closing the Carbon Cycle. In: Inamuddin, Boddula, R., Ahamed, M.I., Khan, A. (eds) Carbon Dioxide Utilization to Sustainable Energy and Fuels. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72877-9_10

Download citation

Publish with us

Policies and ethics

Navigation