Applications of Waterborne Polyurethanes Foams

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 695 Accesses

Abstract

Polyurethane foams are one of the versatile commercial materials ranging from solvent-based polyurethane foams to waterborne polyurethane foams (WPU). Waterborne polyurethanes are eco-friendly and exhibit excellent mechanical characteristics such as strength, flexibility, ease of moulding into required shapes, durability, lightweight and resistance to heat and moisture. Waterborne polyurethane foams have become anĀ essential part of our daily life; we cannot even imagine the future without these foams. These foams are used in almost all industries viz. construction, automobile, footwear, leather, textile, pharmaceutical and furniture, etc. Foams are also used in packaging industries for safeguarding delicate and fragile valuable goods during storage and transportation in addition to their use in applications in filtration, insulation and fashion designing. Waterborne polyurethanes also contribute to sustainable energy through their excellent heat and water insulating characteristics. Recent advancements in technology allowing the preparation of special-purpose WPU foams provide tailor-made solutions to all applications. New eco-friendly composite materials being developed in this area have ample opportunities for the growth of the WPU market in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aniceto, J. P. S., Portuga, I., & Silva, C. M. (2012). Biomass-based polyols through oxypropylation reaction. ChemSusChem, 5(8), 1358ā€“1368.

    Google ScholarĀ 

  • Badri, K. H. (2012). Biobased polyurethane from palm kernel oil-based polyol. Intech.

    Google ScholarĀ 

  • Biron, M. (2004). The plastics industry: Economic overview. Thermosets and Composites.

    Google ScholarĀ 

  • Boffito, M., Sartori, S., Mattu, C., & Ciardelli, G. (2016). Polyurethanes for cardiac applications. Advances in Polyurethane Biomaterials 387ā€“416.

    Google ScholarĀ 

  • Chattopadhyay, D. K., & Raju, K. V. S. N. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 32, 352ā€“418.

    ArticleĀ  Google ScholarĀ 

  • Chuayjuljit, S., Maungchareon, A., & Saravari, O. (2010). Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams. Journal of Reinforced Plastics and Composites, 29, 218ā€“225. https://doi.org/10.1177/0731684408096949

    ArticleĀ  Google ScholarĀ 

  • Deng, R., Davies, P., & Bajaj, A. (2003). Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications. Journal of Sound and Vibration, 262, 391ā€“417.

    ArticleĀ  Google ScholarĀ 

  • Eaves, D. (2004). Handbook of Polymer Foams (p. 289). Rapra Technology Ltd.

    Google ScholarĀ 

  • EI-Wahab, H. A., EI-Fattah, M. A., Ayman, H. A., Elhenawy, A. A., & Alian, N. A. (2015). Synthesis and characterisation of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating. Journal of Organometallic Chemistry, 791, 99ā€“106.

    Google ScholarĀ 

  • Filardo, G., Zaffagnini, S., Di Martino, A., Di Matteo, B., Muccioli, G. M. M., Busacca, M., & Marcacci, M. (2012). Biodegradable polyurethane meniscal scaffold for isolated partial lesions or as combined procedure for knees with multiple comorbidities: Clinical results at 2 years. Knee Surgery, Sport Traumatology Arthroscopy, 22, 128ā€“134. https://doi.org/10.1007/s00167-012-2328-4

  • Fridrihsone, A., Stirna, U., Lazdin, B., Misane, M., & Vilsone, D. (2013). Characterisation of polyurethane networks structure and properties based on rapeseed oil derived polyol. European Polymer Journal, 49, 1204ā€“1214.

    ArticleĀ  Google ScholarĀ 

  • Gama, N. V., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane foams: Past, present, and future materials 11, 1841.

    Google ScholarĀ 

  • Gandini, A., Pinto, C., Costa, J. J., & Pascoal, N. C. (2010). Process for the production of liquid polios of renewable origin by the liquefaction of agro-forestry and agro-food biomass. WO Patent 2010020903 A1, February 25.

    Google ScholarĀ 

  • Gandini, A., & Belgacem, M. N. (2002). Recent contributions to the preparation of polymers derived from renewable resources. Journal of Polymers and the Environment, 10, 105ā€“114.

    ArticleĀ  Google ScholarĀ 

  • Garrido, M., Correia, J. R., & Keller, T. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction Building and Materials, 118, 235ā€“244.

    ArticleĀ  Google ScholarĀ 

  • Guan, J., Song, Y., Lin, Y., Yin, X., Zuo, M., Zhao, Y., Tao, X., & Zheng, Q. (2011). Progress in study of non-isocyanate polyurethane. Industrial and Engineering Chemistry Research, 50, 6517ā€“6527.

    ArticleĀ  Google ScholarĀ 

  • Guo, A., Javni, I., & Petrovic, Z. (1999). Rigid polyurethane foams based on soybean oil. Journal of Applied Polymer Science, 77, 467ā€“473.

    ArticleĀ  Google ScholarĀ 

  • Honarkar, H. (2018). Waterborne polyurethanes: A review. Journal of Dispersion Science and Technology, 39(4), 507ā€“516.

    Google ScholarĀ 

  • Hsu, S. H., Dai, L. G., Hung, Y. M., & Dai, N. T. (2018). Evaluation and characterisation of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion. International Journal of Nanomedicine, 13, 5485ā€“5497. https://doi.org/10.2147/IJN.S169825

    ArticleĀ  Google ScholarĀ 

  • Koh, E., Kim, N. K., Shin, J., & Kim, Y. M. (2014). Polyurethane microcapsules for self-healing paint coatings. RSC Advances, 4, 16214ā€“16223.

    ArticleĀ  Google ScholarĀ 

  • Konieczny, J., & Loos, K. (2019). Green polyurethanes from renewable isocyanates and biobased white dextrins. Polymers (basel), 11(2), 256. https://doi.org/10.3390/polym11020256

    ArticleĀ  Google ScholarĀ 

  • Krupadam, R. J., Khan, M. S., & Das, S. (2010). Adsorption of fluoride from water by surface-functionalised polyurethane foam. Water Science and Technology, 62(4), 759ā€“765.

    ArticleĀ  Google ScholarĀ 

  • Lammers, G., Stamhuis, E. J., & Beenackers, A. A. C. M. (1993). Kinetics of the hydroxypropylation of potato starch in aqueous solution. Industrial and Engineering Chemistry Research, 32, 835ā€“842.

    ArticleĀ  Google ScholarĀ 

  • Lee, S. T., & Ramesh, N. S. (2004). Polymeric foams: Mechanisms and materials. CRC Press.

    BookĀ  Google ScholarĀ 

  • Lin, Y. Y., Hung, K. C., & Hsu, S. H. (2015). Stability of biodegradable waterborne polyurethane films in buffered saline solutions.Ā Biointerphases, 10(3), 031006. https://doi.org/10.1116/1.4929357

  • Ljubic, D., Srinivasan, M., Szoszkiewicz, R., Javni, I., & Petrovic, Z. S. (2015). Surface modified graphene/single-pase polyurethane elastomers with improved thermo-mechanical and dielectric properties. European Polymer Journal, 70, 55ā€“65.

    ArticleĀ  Google ScholarĀ 

  • Machado, G. S. N., Centenaro, B. R., AlexsandraValĆ©rio, A. A., Souza, U., Silva, A., Oliveira, J. V., & DĆ©borade, . (2017). Oliveira application of polyurethane foam chitosan-coated as a low-cost adsorbent in the effluent treatment. Journal of Water Process Engineering, 20, 201ā€“206.

    ArticleĀ  Google ScholarĀ 

  • Mao, N., Zhou, L., Ye, Z., Zheng, W., Peng, L., & Li, Y. (2013). Preparation of waterborne polyurethane foam with active carbon and its adsorption for phenol in aqueous solution. Journal of Environmental Engineering, 139(8), 1070ā€“1079.

    Google ScholarĀ 

  • Massalha, N., Brenner, A., Sheindorf, C., Haimov, Y., & Sabban, I. (2015). Enriching composite hydrophilic polyurethane foams with PAC to enhance adsorption of phenol from aqueous solutions. Chemical Engineering Journal, 280, 283ā€“292.

    ArticleĀ  Google ScholarĀ 

  • Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692ā€“1704.

    ArticleĀ  Google ScholarĀ 

  • Mishra, M. (2019). Encyclopedia of polymer applications, (Vol. 3). CRC Press.

    Google ScholarĀ 

  • Morral-RuĆ­z, G., Melgar-Lesmes, P., GarcĆ­a, M. L., Solans, C., & Garcia-Celma, M. L. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461, 1ā€“13. https://doi.org/10.1016/j.ijpharm.2013.11.026

  • Mukherjee, M., Gurusamy-Thangavelu, S. A., Chelike, D. K., Alagumalai, A., Das, B. N., & Mandal, A. B. (2019). Biodegradable polyurethane foam as shoe insole to reduce footwear waste: Optimisation by morphological physicochemical and mechanical properties. Applied Surface Science, 499, 143966. https://doi.org/10.1016/j.apsusc.2019.143966

  • Niu, M., Zhao, G., & Alma, M. H. (2011). Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: A review. Forestry Studies in China, 13, 71ā€“79.

    ArticleĀ  Google ScholarĀ 

  • Omrani, I., Babanejad, N., Shendi, H. K., & Nabid, M. R. (2017). Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release. Materials Science and Engineering, C: Materials for Biological Applications, 70(1), 607ā€“616. https://doi.org/10.1016/j.msec.2016.09.036

    ArticleĀ  Google ScholarĀ 

  • Panda, S. S., Panda, B. P., Nayak, S. K., & Mohanty, S. (2018). A review on waterborne thermosetting polyurethane coatings based on castor oil: Synthesis, characterisation, and application 500ā€“522.

    Google ScholarĀ 

  • Petrovi'c, Z. S., & Cvetkovi'c, I. (2012). Vegetable oil-based hyperbranchedpolyols in flexible foams. Contemporary Materials, 1, 63ā€“71.

    Google ScholarĀ 

  • Philipp, C., & Eschig, S. (2012). Waterborne polyurethane wood coatings based on rapeseed fatty acid methyl esters. Progress in Organic Coatings, 74, 705ā€“711. https://doi.org/10.1016/j.porgcoat.2011.09.028

    ArticleĀ  Google ScholarĀ 

  • Plasticsinsight.com. (2018). Polyurethane production, pricing and market demand. Available online: https://www.plasticsinsight.com/resin-intelligence/resin-prices/polyurethane/. Accessed on September 13, 2018.

  • Qu, R. J., Gao, J. J., Tang, B., Ma, Q. L., Qu, B. H., & Sun, C. M. (2014). Preparation and property of polyurethane/nanosilver complex fibers. Applied Surface Science, 294, 81ā€“88.

    ArticleĀ  Google ScholarĀ 

  • Rapra, S. (2018). High-performance polymer foams to 2021ā€”Market reports. SmitherRapra.

    Google ScholarĀ 

  • Rapra, S. (2019). Polymer foams market forecast to 2019. SmithersRapra.

    Google ScholarĀ 

  • RomaÅ”kevič, T., Budrienė, S., Pielichowski, K., & Pielichowski, J. (2006). Application of polyurethane-based materials for immobilisation of enzymes and cells: a review. CHEMIJA, 17, 74ā€“89.

    Google ScholarĀ 

  • Serrano, A. M., Borreguero, I., Garrido, J. F., & RodrĆ­guez and M. Carmona, . (2016). Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Applied Thermal Engineering, 103, 226ā€“232.

    ArticleĀ  Google ScholarĀ 

  • Sheikhy, H., Shahidzadeh, M., Ramezanzadeh, B., & Noroozi, F. (2013). Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. Journal of Industrial and Engineering Chemistry, 19, 1949ā€“1955.

    ArticleĀ  Google ScholarĀ 

  • Singhal, P., Small, W., Cosgriff-Hernandez, E., Maitland, D. J., & Wilson, T. S. (2014). Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia, 10(1), 67ā€“76. https://doi.org/10.1016/j.actbio.2013.09.027

    ArticleĀ  Google ScholarĀ 

  • Somani, K. K., Patel, S., Rakshit, N., & Animesh, . (2003). Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 23, 269ā€“275. https://doi.org/10.1016/S0143-7496(03)00044-7

    ArticleĀ  Google ScholarĀ 

  • Szycher, M. (1999). Handbook of polymers (1st edn, pp. 13ā€“34). CRC Press.

    Google ScholarĀ 

  • Tamami, B., Sohn, S., & Wilkes, G. L. (2004). Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. Journal of Applied Polymer Science, 92, 883ā€“891.

    ArticleĀ  Google ScholarĀ 

  • Tanzi, M. C., FarĆØ, S., Petrini, P., Tanini, A., Piscitelli, E., Zecchi Orlandini, S., & Brandi, M. L. (2003). Cytocompatibility of polyurethane foams as biointegrable matrices for the preparation of scaffolds for bone reconstruction. Journal of Applied Biomaterials and Biomechanics, 1(1), 58ā€“66.

    Google ScholarĀ 

  • Titow, W. V. (2001). PVC Technology (pp. 146). Rapra Technology Ltd. ISBN 1859572405.

    Google ScholarĀ 

  • Trang, D. T., & Zenitova, L. A. (2019). Study on the sorption capacity of the adsorbent based on polyurethane and chitin to remove oil spills Y. Earth and Environmental Science, 337, 012008.

    Google ScholarĀ 

  • Tu, Y.-C., Kiatsimkul, P., Suppes, G., & Hsieh, F.-H. (2007). Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. Journal of Applied Polymer Science, 105, 453ā€“459.

    Google ScholarĀ 

  • VĆ”squez, L., Campagnolo, L., Athanassiou, A., & Fragouli, D. (2019). ACS Applied Materials and Interfaces, 11(33), 30207ā€“30217. https://doi.org/10.1021/acsami.9b07907

    ArticleĀ  Google ScholarĀ 

  • Vincent, B. J., & Natarajan, B. (2014). Waterborne polyurethane from polycaprolactone and tetramethylxylene diisocyanate: Synthesis by varying NCO/OH ratio and its characterisation as wood coatings. Open Journal of Organic Polymer Materials, 4, 37ā€“42.

    Google ScholarĀ 

  • Wan, T., & Chen, D. (2017). Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain. Journal of Material Science, 52, 197ā€“207.

    Google ScholarĀ 

  • Wang, T., Sun, W., Zhang, X., Xu, H., & Xu, F. (2017). Waterborne polyurethane coatings with covalently linked black dye Sudan Black B. Materials (basel), 10(11), 1247. https://doi.org/10.3390/ma10111247

    ArticleĀ  Google ScholarĀ 

  • Wu, G. M., Chen, J., Huo, S. P., Liu, G. F., & Kong, Z. W. (2014). Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydrate Polymers, 105, 207ā€“213. https://doi.org/10.1016/j.carbpol.2014.01.095

    ArticleĀ  Google ScholarĀ 

  • **nrong, S., Nanfang, W., Kunyang, S., Sha, D., & Zhen, C. (2014). Synthesis and characterisation of waterborne polyurethane containing UV absorption group for finishing of cotton fabrics. Journal of Industrial and Engineering Chemistry, 20, 3228ā€“3233.

    ArticleĀ  Google ScholarĀ 

  • Yang, D., Han, L., & Zhang, H. (2011). Monocomponent waterborne polyurethane adhesives: Influence of crosslinking agent on their properties. Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 48, 277ā€“283.

    ArticleĀ  Google ScholarĀ 

  • Yari, A., Yeganeh, H., & Bakhshi, H. (2012). Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. Journal of Materials Science. Materials in Medicine, 23, 2187ā€“2202. https://doi.org/10.1007/s10856-012-4683-6

    ArticleĀ  Google ScholarĀ 

  • Zhang, C., & Kessler, M. R. (2015). Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol. ACS Sustainable Chemical Engineering, 3(4), 743ā€“749. https://doi.org/10.1021/acssuschemeng.5b00049

    ArticleĀ  Google ScholarĀ 

  • Zhang, S., Li, Y., Peng, L., Li, Q., Chen, S., & Hou, K. (2013). Synthesis and characterisation of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Composites. Part A, Applied Science and Manufacturing, 55, 94ā€“101.

    ArticleĀ  Google ScholarĀ 

  • Zhao, B., Qian, Y., Qian, X., Fan, J., & Feng, Y. (2019). Fabrication and characterization of waterborne polyurethane/silver nanocomposite foams 40(4), 1492ā€“1498.

    Google ScholarĀ 

  • Zhou, X., Fang, C., Li, S., Cheng, Y., & Lei, W. (2015). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science & Technology, 31(7), 708ā€“722.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Narayana Saibaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayana Saibaba, K.V. (2021). Applications of Waterborne Polyurethanes Foams. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_9

Download citation

Publish with us

Policies and ethics

Navigation