Properties and Characterization Techniques for Waterborne Polyurethanes

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 678 Accesses

Abstract

Polyurethanes are a class of polymeric materials possessing a broad range of properties and characteristics both chemical and physical when compared with monolithic materials. Due to a wide availability of monolithic materials commercially and due to the fact that the properties of those materials could be altered suitably, combination of polyurethanes to obtain customizable properties cater to the growing needs of contemporary technologies including elastomers, foams, coatings, glass, paper, wood and adhesives. Waterborne Polyurethanes (WPUs) are currently in the research limelight among various researchers due to its novelty, unique properties and wide scope for applicability in fields like caulking materials, paint additives, various fibers, emulsion polymerization media, dyes and primers for metals, pigment pastes and defoamers. WPUs are considered to be green elements which are characterized by non-flammability, non-toxicity and less environment degradability and for this reason these materials are taken up for research during recent times. Surface oxygen groups of WPUs are amended during the recent researchers for converting them into polymer nano-composites. Due to the unique phase characteristics, nano-structured organic and inorganic hybrid composites possess better and enhanced functional characteristics. Such unique phase characteristics arise due to exfoliation and interlayer collation which increases the interfacial bond between organic and inorganic phased thus improving the composite properties. Manufacturing of such hybrid materials requires special attention toward their miscibility since agglomeration and accretion are considered to be major problems that results due to poor interaction between polymer and dispersoid along with least homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aizpurua, J., Martin, L., Fernández, M., González, A., & Irusta, L. (2020). Recyclable, remendable and healing polyurethane/acrylic coatings from UV curable waterborne dispersions containing Diels-Alder moieties. Progress in Organic Coatings, 139, 105460.

    Google Scholar 

  • Alaa, M. A., Yusoh, K., & Hasany, S. F. (2015). Synthesis and characterization of polyurethane–organoclay nanocomposites based on renewable castor oil polyols. Polymer Bulletin, 72(1), 1–17.

    Article  Google Scholar 

  • Andjelkovic, D. D., Valverde, M., Henna, P., Li, F., & Larock, R. C. (2005). Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure–property relationships. Polymer, 46(23), 9674–9685.

    Article  Google Scholar 

  • Arnolds, R. (1990). In A. D. Wilson, J. W. Nicholson, & H. J. Prosser (Eds.), Waterborne coatings, surface coatings (Vol. 3, pp. 179–198). Elsevier Science.

    Google Scholar 

  • Bai, C. Y., Zhang, X. Y., Dai, J. B., & Zhang, C. Y. (2007). Water resistance of the membranes for UV curable waterborne polyurethane dispersions. Progress in Organic Coatings, 59, 331–336.

    Article  Google Scholar 

  • Barikani, M., Ebrahimi, M. V., & Mohaghegh, S. S. (2007). Influence of diisocyanate structure on the synthesis and properties of ionic polyurethane dispersions. Polymer-Plastics Technology and Engineering, 46(11), 1087–1092.

    Article  Google Scholar 

  • Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., & Haddon, R. C. (2009). Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. Journal of the American Chemical Society, 131, 1336–1337.

    Article  Google Scholar 

  • Bloor, D., Graham, A., Williams, E. J., Laughlin, P. J., & Lussey, D. (2006). Metal–polymer composite with nanostructured filler particles and amplified physical properties. Applied Physics Letters, 88, 102103–102108.

    Article  Google Scholar 

  • Bourlinos, A. B., Gournis, D., Petridis, D., Szabo, T., Szeri, A., & Dekany, I. (2003). Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19, 6050–6055.

    Article  Google Scholar 

  • Bozlar, M., He, D., Bai, J., Chalopin, Y., Mingo, N., & Volz, S. (2010). Carbon nanotube microarchitectures for enhanced thermal conduction at ultralow mass fraction in polymer composites. Advanced Materials, 22, 1654–1658.

    Article  Google Scholar 

  • Cakić, S. M., Å pírková, M., Ristić, I. S., B-Simendić, J. K., Milena, M., & PorÄ™ba, R. (2013). The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content. Materials Chemistry and Physics, 138(1), 277–285.

    Google Scholar 

  • Chattopadhyay, D. K., & Raju, K. V. S. N. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 32, 352–418.

    Article  Google Scholar 

  • Chang, J., Wang, X., Shao, J., Li, X., **n, W., & Luo, Y. (2020). Synthesis and characterization of environmentally-friendly self-matting waterborne polyurethane coatings. Coatings, 10(5), 494.

    Article  Google Scholar 

  • Cheng, L., Zhang, X., Dai, J., & Liu, S. (2012). Journal of Dispersion Science and Technology, 33, 840–845.

    Article  Google Scholar 

  • Choi, J. T., Kim, D. H., Ryu, K. S., Lee, H. I., Jeong, H. M., Shin, C. M., Kim, J. H., & Kim, B. Q. (2011). Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties. Macromolecular Research, 19, 809–814.

    Article  Google Scholar 

  • Chung, D. D. L. (2004). Electrical applications of carbon materials. Journal of Materials Science, 39, 2645–2661.

    Article  Google Scholar 

  • Corcuera, M. A., Rueda, L., d’Arlas, B. F., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175–2184.

    Article  Google Scholar 

  • Coutinho, F., Delpech, M. C., & Alves, L. S. (2001). Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly (propylene glycol): Synthesis and characterization. Journal of Applied Polymer Science, 80(4), 566–572.

    Article  Google Scholar 

  • Deng, X., Liu, F., Luo, Y., Chen, Y., & Jia, D. (2007). Preparation, structure and properties of comb-branched waterborne polyurethane/OMMT nanocomposites. Progress in Organic Coatings, 60(1), 11–16.

    Article  Google Scholar 

  • Dieterich, D., Keberle, W., & Witt, H. (1970). Angewandte Chemie International Edition, 9, 40–50.

    Article  Google Scholar 

  • Díez-García, I., Keddie, J. L., Eceiza, A., & Tercjak, A. (2020). Optimization of adhesive performance of waterborne poly(urethane-urea)s for adhesion on high and low surface energy surfaces. Progress in Organic Coatings, 140, 105495.

    Google Scholar 

  • Fan, W., **, Y., Shi, L., Zhou, R., & Du, W. (2020). Develo** visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties. Journal of Materials Chemistry A, 8(14), 6757–6767.

    Article  Google Scholar 

  • Fu, C., Yang, Z., Zheng, Z., & Shen, L. (2014). Properties of alkoxysilane castor oil synthesized via thiol-ene and its polyurethane/siloxane hybrid coating films. Progress in Organic Coatings, 77(8), 1241–1248.

    Article  Google Scholar 

  • Fu, C., Hu, X., Yang, Z., Shen, L., & Zheng, Z. (2015). Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol–gel process. Progress in Organic Coatings, 84, 18–27.

    Article  Google Scholar 

  • Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068–2075.

    Article  Google Scholar 

  • Garcia-Pacios, V., Jofre-Reche, J. A., Costa, V., Colera, M., & Martin-Martinez, J. M. (2013). Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 76, 1484–1493.

    Article  Google Scholar 

  • Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Advances, 5(15), 11524–11533.

    Article  Google Scholar 

  • Gurunathan, T., Arukula, R., Suk Chung, J., & Rao, C. R. (2016). Development of environmental friendly castor oil-based waterborne polyurethane dispersions with polyaniline. Polymers for Advanced Technologies. https://doi.org/10.1002/pat.3797

    Article  Google Scholar 

  • Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36, 914–944.

    Article  Google Scholar 

  • He, X., Zhang, Y., He, J., & Liu, F. (2020). Synthesis and characterization of cathodic electrode position coatings based on octadecyl-modified cationic waterborne polyurethanes. Journal of Coatings Technology and Research, 23, 1–4.

    Google Scholar 

  • Hepburn, C. (1992). Polyurethane elastomers. Applied Science. https://doi.org/10.1007/978-94-011-2924-4

    Book  Google Scholar 

  • Honarkar, H., Barmar, M., & Barikani, M. (2014). In 5th International Congress on Nanoscience & Nanotechnology (ICNN 2014), Tehran, October 22–24.

    Google Scholar 

  • Honarkar, H., Barmar, M., & Barikani, M. (2016). In 6th International Congress on Nanoscience & Nanotechnology (ICNN 2016), Tehran, October 26–28.

    Google Scholar 

  • Honarkar, H., Barmar, M., Barikani, M., & Shokrollahi, P. (2016). Korean Journal of Chemical Engineering, 33, 319–329.

    Google Scholar 

  • Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102, 151–160. https://doi.org/10.1016/j.eurpolymj.2018.03.020

    Article  Google Scholar 

  • Hormaiztegui, M. E., Daga, B., Aranguren, M. I., & Mucci, V. (2020). Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films. Progress in Organic Coatings, 144, 105649.

    Google Scholar 

  • Hourston, D. J., Williams, G., Satguru, R., Padget, J. D., & Pears, D. (1997). Structure–property study of polyurethane anionomers based on various polyols and diisocyanates. Journal of Applied Polymer Science, 66(10), 2035–2044.

    Article  Google Scholar 

  • Hsu, Y. T., Wang, W. H., & Hung, W. H. (2020). Evaluating the properties of a coating material with polycaprolactone-degradable fluorinated silicon-containing waterborne polyurethane. Sustain, 12(9), 3745.

    Article  Google Scholar 

  • Im, H., & Kim, J. (2012). Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon, 50, 5429–5440.

    Article  Google Scholar 

  • Jeon, H. T., Jang, M. K., Kim, B. K., & Kim, K. H. (2007). Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 302(1), 559–567.

    Article  Google Scholar 

  • Jeong, H. M., & Lee, S. H. (2003). Properties of waterborne polyurethane/PMMA/clay hybrid materials. Journal of Macromolecular Science, Part B, 42, 1153–1167.

    Article  Google Scholar 

  • Jeong, H. M., Jang, K. H., & Cho, K. (2003). Properties of waterborne polyurethanes based on polycarbonate diol reinforced with organophilic clay. Journal of Macromolecular Science, Part B, 42, 1249–1263.

    Article  Google Scholar 

  • Kim, B. K., Seo, J. W., & Jeong, H. M. (2003). Morphology and properties of waterborne polyurethane/clay nanocomposites. European Polymer Journal, 39, 85–91.

    Article  Google Scholar 

  • Kim, B. S., Park, S. H., & Kim, B. K. (2006). Nanosilica-reinforced UV-cured polyurethane dispersion. Colloid and Polymer Science, 284(9), 1067–1072.

    Article  Google Scholar 

  • Kuan, H. C., Ma, C. C. M., Chang, W. P., Yuen, S. M., Wu, H. H., & Lee, T. M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11), 1703–1710.

    Article  Google Scholar 

  • Kwon, J., & Kim, H. (2005). Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. Journal of Polymer Science Part a: Polymer Chemistry, 43(17), 3973–3985.

    Article  Google Scholar 

  • Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A., & Eceiza, A. (2020). The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polymer Degradation and Stability, 173, 109084.

    Google Scholar 

  • Lee, H. T., & Lin, L. H. (2006). Waterborne polyurethane/clay nanocomposites: Novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules, 39(18), 6133–6141.

    Article  Google Scholar 

  • Lee, Y. R., Raghu, A. V., Jeong, H. M., & Kim, B. K. (2009). Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromolecular Chemistry and Physics, 210, 1247–1254.

    Article  Google Scholar 

  • Lee, D.-I., Kim, S.-H., & Lee, D.-S. (2019). Synthesis of self-healing waterborne polyurethane systems chain extended with chitosan. Polymers, 11(3), 503.

    Article  Google Scholar 

  • Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102, 4477–4482.

    Article  Google Scholar 

  • Li, J., Zheng, W., Zeng, W., Zhang, D., & Peng, X. (2014). Structure, properties and application of a novel low-glossed waterborne polyurethane. Applied Surface Science, 307, 255–262.

    Article  Google Scholar 

  • Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J. C. Z. Z., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. eXPRESS Polymer Letters, 6(4), 293–298.

    Google Scholar 

  • Liu, H., Li, C., & Sun, X. S. (2017). Soy-oil-based waterborne polyurethane improved wet strength of soy protein adhesives on wood. International Journal of Adhesion and Adhesives, 73, 66–74.

    Article  Google Scholar 

  • Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F., & Tour, J. M. (2008). Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 130, 16201–16206.

    Article  Google Scholar 

  • Lu, Y., & Larock, R. C. (2010). Aqueous cationic polyurethane dispersions from vegetable oils. Chemsuschem, 3(3), 329–333.

    Article  Google Scholar 

  • Ma, Z., Zhang, X., Zhang, X., Ahmed, N., Fan, H., Wan, J., Bittencourt, C., & Li, B. G. (2020). Synthesis of CO2-derived, siloxane-functionalized poly (ether carbonate) s and waterborne polyurethanes. Industrial & Engineering Chemistry Research, 59(7), 3044–3051.

    Article  Google Scholar 

  • Madbouly, S. A., **a, Y., & Kessler, M. R. (2013). Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules, 46, 4606–4616. https://doi.org/10.1021/ma400200y

    Article  Google Scholar 

  • Maldovan, M. (2013). Sound and heat revolutions in phononics. Nature, 503, 209–214.

    Article  Google Scholar 

  • Meera, K. M. S., Sankar, R. M., Paul, J., Jaisankar, S. N., & Mandal, A. B. (2014). The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Physical Chemistry Chemical Physics, 16(20), 9276–9288.

    Article  Google Scholar 

  • Meng, Q. B., Lee, S. I., Nah, C., & Lee, Y. S. (2009). Preparation of waterborne polyurethanes using an amphiphilicdiol for breathable waterproof textile coatings. Progress in Organic Coatings, 66, 382–386.

    Article  Google Scholar 

  • Mishra, A. K., Mishra, R. S., Narayan, R., & Raju, K. V. S. N. (2010). Effect of nano ZnO on the phase mixing of polyurethane hybrid dispersions. Progress in Organic Coatings, 67(4), 405–413.

    Article  Google Scholar 

  • Panda, S. S., Panda, B. P., Mohanty, S., & Nayak, S. K. (2016). Synthesis and properties of castor oil based waterborne polyurethane Closite 30B nanocomposite coatings. International Journal of Coating Research and Technology. https://doi.org/10.1007/s11998-016-9855-8.

  • Patel, D. P., Nimavat, K. S., & Vyas, K. B. (2011). Surface coating studies of polyurethane derived from [(alkyd)-(epoxy resin treated castor oil)] isocyanate terminated castor oil mixture. Advances in Applied Science Research, 2, 558–566.

    Google Scholar 

  • Poussard, L., Lazko, J., Mariage, J., Raquez, J. M., & Dubois, P. (2016). Biobased waterborne polyurethanes for coating applications: How fully biobasedpolyols may improve the coating properties. Progress in Organic Coatings, 97, 175–183.

    Article  Google Scholar 

  • Pramoda, K. P., Hussain, H., Koh, H. M., Tan, H. R., & He, C. B. (2010). Covalent bonded polymer–graphene nanocomposites. Journal of Polymer Science Part A, 48, 4262–4267.

    Article  Google Scholar 

  • Rahman, M. M., Kim, H. D., & Lee, W. K. (2008). Preparation and characterization of waterborne polyurethane/clay nanocomposite: Effect on water vapor permeability. Journal of Applied Polymer Science, 110(6), 3697–3705.

    Article  Google Scholar 

  • Ramesh, M., & Rajesh kumar, L. (2018). Wood flour filled thermoset composites. Materials Research Foundations, 38, 33–65. https://doi.org/10.21741/9781945291876-2.

  • Ramesh, M., & Kumar, L. R. (2020). Bioadhesives. In Inamuddin, R. Boddula, M. I. Ahamed, & A. M. Asiri (Eds.), Green adhesives (pp. 145–162). https://doi.org/10.1002/9781119655053.ch7.

  • Ramesh, M., Rajesh Kumar, L., Khan, A., & Asiri, A. M. (2020). Self-healing polymer composites and its chemistry. Self-healing composite materials (pp. 415–427). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817354-1.00022-3.

  • Riffat, S. B., & Ma, X. (2003). Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering, 23, 913–935.

    Article  Google Scholar 

  • Rosthauser, J. W., & Nachtkamp, K. (1987). In K. C. Frisch, D& . Klempner (Eds.), Advances in urethane science and technology (pp. 121–162). Technomic.

    Google Scholar 

  • Sanada, K., Tada, Y., & Shindo, Y. (2009). Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Composites Part a: Applied Science and Manufacturing, 40, 724–730.

    Article  Google Scholar 

  • Santamaria-Echart, A., Ugarte, L., Garcia-Astrain, C., Arbelaiz, A., Corcuera, M. A., & Eceiza, A. (2016). Carbohydrate Polymers, 151, 1203–1209.

    Article  Google Scholar 

  • Saqr, K. M., Mansour, M. K., & Musa, M. N. (2008). Thermal design of automobile exhaust based thermoelectric generators: Objectives and challenges. International Journal of Automotive Technology, 9, 155–160.

    Article  Google Scholar 

  • Serkis, M., Spirkova, M., Hodan, J., & Kredatusova, J. (2016). Progress in Organic Coatings, 101, 342–349.

    Article  Google Scholar 

  • Shaik, A., Narayan, R., & Raju, K. V. S. N. (2014). Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. Journal of Coatings Technology and Research, 11(3), 397–407.

    Article  Google Scholar 

  • Sim, L. C., Ramanan, S. R., Ismail, H., Seetharamu, K. N., & Goh, T. J. (2005). Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 430, 155–165.

    Article  Google Scholar 

  • Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342–3347.

    Article  Google Scholar 

  • Sukhawipat, N., Saetung, N., Pilard, J. F., Bistac, S., & Saetung, A. (2020). Effects of molecular weight of hydroxyl telechelic natural rubber on novel cationic waterborne polyurethane: A new approach to water-based adhesives for leather applications. International Journal of Adhesion and Adhesives, 102593.

    Google Scholar 

  • Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L., Zhang, J., Aksay, L., & Liu, J. (2009). Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 3, 907–914.

    Article  Google Scholar 

  • Wijs, J. J. A. (1929). The Wijs method as the standard for iodine absorption. The Analyst, 54, 12. https://doi.org/10.1039/an9295400012

    Article  Google Scholar 

  • Wu, G., Bian, J., Liu, G., Chen, J., Huo, S., **, C., & Kong, Z. (2020). Self-catalytic two-component waterborne polyurethanes with amino polyols from biomass based epoxy resin. Journal of Polymers and the Environment, 28(2), 713–724.

    Article  Google Scholar 

  • **e, X. L., Mai, Y. W., & Zhou, X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science & Engineering, 49, 89–112.

    Article  Google Scholar 

  • Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., & Chen, Y. (2009). A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 21, 1275–1279.

    Article  Google Scholar 

  • Yang, J. E., Kong, J. S., Park, S. W., Lee, D. J., & Kim, H. D. (2002). Preparation and properties of waterborne polyurethane–urea anionomers. I. The influence of the degree of neutralization and counter ion. Journal of Applied Polymer Science, 86(9), 2375–2383.

    Google Scholar 

  • Yang, C. H., Liu, F. J., Liu, Y. P., & Liao, W. T. (2006). Hybrids of colloidal silica and waterborne polyurethane. Journal of Colloid and Interface Science, 302(1), 123–132.

    Article  Google Scholar 

  • Yeganeh, H., & Mehdizadeh, M. R. (2004). Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resources polyol. European Polymer Journal, 40(6), 1233–1238.

    Google Scholar 

  • Yeh, J. M., Yao, C. T., Hsieh, C. F., Yang, H. C., & Wu, C. P. (2008). Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst. European Polymer Journal, 44(9), 2777–2783.

    Article  Google Scholar 

  • Yousefi E, Dolati A, Najafkhani H. (2020). Preparation of robust antistatic waterborne polyurethane coating. Progress in Organic Coatings, 139, 105450.

    Google Scholar 

  • Yu, H., Yuan, Q., Wang, D., & Zhao, Y. (2004). Preparation of an ultraviolet curable water-borne poly (urethane acrylate)/silica dispersion and properties of its hybrid film. Journal of Applied Polymer Science, 94(4), 1347–1352.

    Article  Google Scholar 

  • Zhang, S., Yu, A., Liu, S., Zhao, J., Jiang, J., & Liu, X. (2012). Polymer Bulletin, 68, 1469–1482.

    Article  Google Scholar 

  • Zhang, Y., Zhang, W., Wang, X., Dong, Q., Zeng, X., Quirino, R. L., Lu, Q., Wang, Q., & Zhang, C. (2020). Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents. Progress in Organic Coatings, 142, 105588.

    Google Scholar 

  • Zhou, X., Li, Y., Fang, C., Li, S., Cheng, Y., Lei, W., & Meng, X. (2015a). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science and Technology, 31, 708–722.

    Article  Google Scholar 

  • Zhou, X., Li, Y., Fang, C., Li, S., Cheng, Y., Lei, W., & Meng, X. (2015b). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2015.03.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramesh, M., Rajeshkumar, L., Balaji, D., Priyadharshini, M. (2021). Properties and Characterization Techniques for Waterborne Polyurethanes. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_6

Download citation

Publish with us

Policies and ethics

Navigation