Covid-19 Pandemic and Coronaviruses from Discovery to Treatment: A Tale of Two Decades of 21st Century

  • Chapter
  • First Online:
Modeling, Control and Drug Development for COVID-19 Outbreak Prevention

Abstract

A new world map was led to progression after Pandemic Covid-19. The said arrangement narrowed the circle of life. A huge number of literatures could be seen on the electronic screens especially in 2020. But, truly observing one may find the word “Corona” early in the twenty-first century starting from China with a minor pandemic approach. Later in 2012 and now in 2019 and 2020 with an enormous spread around the globe. The current compilation comprehends the published literature on Pandemic Covid-19, summarizing the outbreak, diagnosis, management and the treatments including natural and synthetic molecules, during the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 229.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 229.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wan, Y., et al.: An analysis based on decade-long structural studies of SARS 3, JVI Accepted Manuscript Posted Online 29 January 2020. J. Virol. (2020)

    Google Scholar 

  2. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798), 270–273 (2020)

    Google Scholar 

  3. Cucinotta, D., Vanelli, M.: WHO declares COVID-19 a pandemic. Acta Bio Medica: Atenei Parmensis 91(1), 157 (2020)

    Google Scholar 

  4. Al-Mandhari, A., et al.: Coronavirus disease 2019 outbreak: preparedness and readiness of countries in the Eastern Mediterranean Region (2020). https://coronavirus1science.com/item/6166e6044a2114454e136505bc74865c1c52e8da

  5. Sifuentes-Rodríguez, E., Palacios-Reyes, D.: COVID-19: The outbreak caused by a new coronavirus. Boletin Medico del Hospital Infantil de Mexico 77(2), 47–53 (2020)

    Google Scholar 

  6. Wang, C., et al.: Evolving epidemiology and impact of non-pharmaceutical interventions on the outbreak of Coronavirus disease 2019 in Wuhan, China. MedRxiv (2020)

    Google Scholar 

  7. Cases, C. and D. by Country: Territory, or conveyance. Peжим дocтyпy. https://www.worldometers.info/coronavirus

  8. Rodríguez-Rey, R., Garrido-Hernansaiz, H., Collado, S.: Psychological impact and associated factors during the initial stage of the coronavirus (COVID-19) pandemic among the general population in Spain. Front. Psychol. 11, 1540 (2020)

    Article  Google Scholar 

  9. Bol, D., et al.: The effect of COVID‐19 lockdowns on political support: Some good news for democracy? Eur. J. Polit. Res. (2020)

    Google Scholar 

  10. Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the COVID-19 pandemic: development of a public coronavirus Twitter data set. JMIR Public Health Surveill. 6(2), e19273 (2020)

    Google Scholar 

  11. Assiri, A., et al.: Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 369(5), 407–416 (2013)

    Article  Google Scholar 

  12. Van Der Hoek, L., et al.: Identification of a new human coronavirus. Nat. Med. 10(4), 368–373 (2004)

    Article  Google Scholar 

  13. Korber, B., et al.: Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4), 812–827. e19 (2020)

    Google Scholar 

  14. Zaki, A.M., et al.: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367(19), 1814–1820 (2012)

    Article  Google Scholar 

  15. Wang, W., et al.: Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virology 474, 19–27 (2015)

    Article  Google Scholar 

  16. Drosten, C., et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348(20), 1967–1976 (2003)

    Article  Google Scholar 

  17. Shen, K., et al.: Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J. Pediatrics, 1–9 (2020)

    Google Scholar 

  18. Ahmad, T., et al.: COVID-19: Zoonotic aspects. Travel Medicine and Infectious Disease (2020)

    Google Scholar 

  19. Fan, W., Holmes Edward, C., Yong-Zhen, Z.: A new coronavirus associated with human respiratory disease in China. Nature 579(7798), 265–269 (2020)

    Google Scholar 

  20. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 579(7798), 270–273 (2020)

    Article  Google Scholar 

  21. Dong, L., Hu, S., Gao, J.: Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. & Ther. 14(1), 58–60 (2020)

    Article  Google Scholar 

  22. Wang, M., et al.: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30(3), 269–271 (2020)

    Article  Google Scholar 

  23. Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. The Lancet 395(10223), 497–506 (2020)

    Article  Google Scholar 

  24. Yang, J., et al.: Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int. J. Infect. Dis. (2020)

    Google Scholar 

  25. Hoffmann, M., et al.: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell (2020)

    Google Scholar 

  26. Li, W., et al.: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450–454 (2003)

    Google Scholar 

  27. Shirato, K., Kawase, M., Matsuyama, S.: Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virol. 517, 9–15 (2018)

    Article  Google Scholar 

  28. Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E.: Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81(4), 853–879 (2000)

    Article  Google Scholar 

  29. Song, Z., et al.: From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11(1), 59 (2019)

    Article  Google Scholar 

  30. Kilinç, E., Kilinç, Y.B.: Mast cell stabilizers as a supportive therapy can contribute to alleviate fatal inflammatory responses and severity of pulmonary complications in COVID-19 infection. Anadolu Kliniği Tıp Bilimleri Dergisi, 2020. 25(Special Issue on COVID 19), 111–118

    Google Scholar 

  31. Kilinc, E., et al.: Effects of Nigella sativa seeds and certain species of fungi extracts on number and activation of dural mast cells in rats. Physio. Int. 104(1), 15–24 (2017)

    Article  MathSciNet  Google Scholar 

  32. Koyuncu Irmak, D., Kilinc, E., Tore, F.: Shared fate of meningeal mast cells and sensory neurons in migraine. Front. Cell. Neurosci. 13, 136 (2013)

    Google Scholar 

  33. Theoharides, T.C., et al.: Mast cells and inflammation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1822(1), 21–33 (2012)

    Google Scholar 

  34. Kilinc, E., et al.: Serotonergic mechanisms of trigeminal meningeal nociception: implications for migraine pain. Neuropharmacology 116, 160–173 (2017)

    Article  Google Scholar 

  35. Moon, T.C., Befus, A.D., Kulka, M.: Mast cell mediators: their differential release and the secretory pathways involved. Front. Immunol. 5, 569 (2014)

    Article  Google Scholar 

  36. Tore, F., Tuncel, N.: Mast cells: target and source of neuropeptides. Curr. Pharm. Des. 15(29), 3433–3445 (2009)

    Article  Google Scholar 

  37. Kritas, S., et al.: Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J Biol. Regul. Homeost. Agents 34(1), 10.23812 (2020)

    Google Scholar 

  38. Conti, P., et al.: Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 34(2), 1 (2020)

    Google Scholar 

  39. Okabayashi, T., et al.: Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J. Med. Virol. 78(4), 417–424 (2006)

    Article  Google Scholar 

  40. Russell, B., et al.: Associations between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current evidence. Ecancermedicalscience, 14 (2020)

    Google Scholar 

  41. Andersson, C.K., et al.: Activated MC TC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis. Respir. Res. 12(1), 139 (2011)

    Article  Google Scholar 

  42. Storms, W., Kaliner, M.A.: Cromolyn sodium: fitting an old friend into current asthma treatment. J. Asthma 42(2), 79–89 (2005)

    Article  Google Scholar 

  43. Gao, J., Tian, Z., Yang, X.: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends (2020)

    Google Scholar 

  44. Gautret, P., et al.: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 105949 (2020)

    Google Scholar 

  45. Cortegiani, A., et al.: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit.Al Care (2020)

    Google Scholar 

  46. Ko, W.-C., et al.: Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents (2020)

    Google Scholar 

  47. Cao, B., et al.: A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. (2020)

    Google Scholar 

  48. Stebbing, J., et al.: COVID-19: combining antiviral and anti-inflammatory treatments. Lancet. Infect. Dis 20(4), 400–402 (2020)

    Article  Google Scholar 

  49. Xu, X., et al.: Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. 117(20), 10970–10975 (2020)

    Article  Google Scholar 

  50. Ke, Y.-Y., et al.: Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomedical J. (2020)

    Google Scholar 

  51. Wang, J.: Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study? J. Chem. Inform. Modeling (2020)

    Google Scholar 

  52. Raaben, M., et al.: The proteasome inhibitor Velcade enhances rather than reduces disease in mouse hepatitis coronavirus-infected mice. J. Virol. 84(15), 7880–7885 (2010)

    Article  Google Scholar 

  53. Finelli, C., Parisi, S.: The clinical impact of COVID-19 epidemic in the hematologic setting. Adv. Biol. Regul. 77, 100742 (2020)

    Google Scholar 

  54. Irani, M., Sarmadi, M., Bernard, F.: Leaves antimicrobial activity of Glycyrrhiza glabra L. IJPR 9(4), 425 (2010)

    Google Scholar 

  55. Wolkerstorfer, A., et al.: Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Res. 83(2), 171–178 (2009)

    Article  Google Scholar 

  56. Messier, C., Grenier, D.: Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses 54(6), e801–e806 (2011)

    Article  Google Scholar 

  57. Aboubakr, H.A., et al.: In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot. 79(6), 1001–1012 (2016)

    Article  Google Scholar 

  58. Ahmed, I., et al.: Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pak. J. Pharm. Sci 30(4), 1341–1344 (2017)

    Google Scholar 

  59. Mondal, S., et al.: Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J. Ethnopharmacol. 136(3), 452–456 (2011)

    Google Scholar 

  60. Johnson, E., et al.: Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand. J. Immunol. 69(3), 242–250 (2009)

    Article  Google Scholar 

  61. Chae, S.-W., et al.: Nutrigenomic study on immunomodulatory function of Cordyceps mycelium extract (Paecilomyces hepiali) in Mitomycin C–treated mice. Food Nutr. Sci. 5(22), 2217 (2014)

    Google Scholar 

  62. Wire, M.B., Shelton, M.J., Studenberg, S.: Fosamprenavir. Clin. Pharmacokinet. 45(2), 137–168 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhlaq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhlaq, M. et al. (2022). Covid-19 Pandemic and Coronaviruses from Discovery to Treatment: A Tale of Two Decades of 21st Century. In: Azar, A.T., Hassanien, A.E. (eds) Modeling, Control and Drug Development for COVID-19 Outbreak Prevention. Studies in Systems, Decision and Control, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-72834-2_30

Download citation

Publish with us

Policies and ethics

Navigation