Data-Driven Multiscale Modeling and Robust Optimization of Composite Structure with Uncertainty Quantification

  • Living reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

It is important to accurately model materials’ properties at lower length scales (micro-level) while translating the effects to the components and/or system level (macro-level) can significantly reduce the amount of experimentation required to develop new technologies. Robustness analysis of fuel and structural performance for harsh environments (such as power uprated reactor systems or aerospace applications) using machine learning-based multiscale modeling and robust optimization under uncertainties are required. The fiber and matrix material characteristics are potential sources of uncertainty at the microscale. The stacking sequence (angles of stacking and thickness of layers) of composite layers causes mesoscale uncertainties. It is also possible for macroscale uncertainties to arise from system properties, like the load or the initial conditions. This chapter demonstrates advanced data-driven methods and outlines the specific capability that must be developed/added for multiscale modeling of advanced composite materials. This chapter proposes a multiscale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators based on microstructurally informed mesoscale materials models to study the impact of operational parameters/uncertainties using machine learning approaches. To ensure optimal composite materials, composite properties are optimized with respect to initial materials volume fraction using data-driven numerical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • T. Aittokoski, K. Miettinen, Efficient evolutionary method to approximate the pareto optimal set in multiobjective optimization. Eng. Opt. 25(6), 1–10 (2008)

    Google Scholar 

  • S.B. Alam, C.S. Goodwin, G.T. Parks, Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel. Prog. Nucl. Energy 111, 24–41 (2019a)

    Article  Google Scholar 

  • S.B. Alam, T. Ridwan, D. Kumar, B. Almutairi, C. Goodwin, G.T. Parks, Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part II: Whole-core analysis. Nucl. Eng. Des. 346, 176–191 (2019b)

    Article  Google Scholar 

  • S.B. Alam, C.S. Goodwin, G.T. Parks, Parametric neutronics analyses of lattice geometry and coolant candidates for a soluble-boron-free civil marine SMR core using micro-heterogeneous duplex fuel. Ann. Nucl. Energy 129, 1–12 (2019c)

    Article  Google Scholar 

  • S.B. Alam, R.G.G. de Oliveira, C.S. Goodwin, G.T. Parks, Coupled neutronic/thermal-hydraulic hot channel analysis of high power density civil marine smr cores. Ann. Nucl. Energy 127, 400–411 (2019d)

    Article  Google Scholar 

  • S.B. Alam, B. Almutairi, T. Ridwan, D. Kumar, C.S. Goodwin, K.D. Atkinson, G.T. Parks, Neutronic investigation of alternative & composite burnable poisons for the soluble-boron-free and long life civil marine small modular reactor cores. Sci. Rep. 9(1), 1–14 (2019e)

    Article  Google Scholar 

  • S.B. Alam, B. Almutairi, D. Kumar, S.H. Tanim, S. Jaradat, C.S. Goodwin, K.D. Atkinson, G.T. Parks, Neutronic feasibility of civil marine small modular reactor core using mixed d2o+ h2o coolant. Nucl. Eng. Des. 359, 110449 (2020a)

    Article  Google Scholar 

  • S.B. Alam, D. Kumar, B. Almutairi, T. Ridwan, C. Goodwin, G.T. Parks, Lattice benchmarking of deterministic, Monte Carlo and hybrid Monte Carlo reactor physics codes for the soluble-boron-free SMR cores. Nucl. Eng. Des. 356, 110350 (2020b)

    Article  Google Scholar 

  • B. Almutairi et al., Weight loss and burst testing investigations of sintered silicon carbide under oxidizing environments for next generation accident tolerant fuels for SMR applications. Mater. Today Commun. 30, 102958 (2022)

    Article  Google Scholar 

  • E.J. Barbero, Finite Element Analysis of Composite Materials Using Abaqus TM, vol 2013 (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  • K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in International Conference on Parallel Problem Solving from Nature (Springer, 2000), pp. 849–858

    Google Scholar 

  • S.B. Dinesh Kumar, D.V. Alam, C. Lacor, Uncertainty quantification and robust optimization in engineering, in Advances in Visualization and Optimization Techniques for Multidisciplinary Research, (Springer, 2020a), pp. 63–93

    Chapter  Google Scholar 

  • S.B. Dinesh Kumar, H.S. Alam, J.M. Palau, C. De Saint Jean, Nuclear data adjustment using bayesian inference, diagnostics for model fit and influence of model parameters, in EPJ Web of Conferences, vol. 239, (EDP Sciences, 2020b), p. 13003

    Google Scholar 

  • D.R. dos Santos Peixoto, CFD-Based Multi-Objective Aerodynamic Optimization Applies to Car Rear Diffusers, PhD thesis, Universidade de SĂŁo Paulo, 2021

    Google Scholar 

  • ESTECO SpA, Robust Design Optimization: Mode FRONTIER Tutorials. ESTECO SpA, Area Science Park, Padriciano 99 c/o, Building B, 34149 Trieste TS, Italy (2022)

    Google Scholar 

  • Md. Hassan, A.H. Khan, R. Verma, D. Kumar, K. Kobayashi, S. Usman, S. Alam, Machine Learning and Artificial Intelligence-Driven Multi-Scale Modeling for High Burnup Accident-Tolerant Fuels for Light Water-Based SMR Applications. ar**v preprint ar**v:2209.12146 (2022)

    Google Scholar 

  • A.H. Khan, S. Omar, N. Mushtary, R. Verma, D. Kumar, S. Alam, Digital Twin and Artificial Intelligence Incorporated With Surrogate Modeling for Hybrid and Sustainable Energy Systems. ar**v preprint ar**v:2210.00073 (2022)

    Google Scholar 

  • K. Kobayashi, D. Kumar, M. Bonney, S. Chakraborty, K. Paaren, S. Alam, Uncertainty Quantification and Sensitivity analysis for Digital Twin Enabling Technology: Application for BISON Fuel Performance Code. ar**v preprint ar**v:2210.07541 (2022a)

    Google Scholar 

  • K. Kobayashi, J. Daniell, S. Usman, D. Kumar, S. Alam, Surrogate Modeling-Driven Physics-Informed Multi-fidelity Kriging: Path Forward to Digital Twin Enabling Simulation for Accident Tolerant Fuel. ar**v preprint ar**v:2210.07164 (2022b)

    Google Scholar 

  • D. Kumar, S.B. Alam, H. Sjöstrand, J.M. Palau, C.S. de Jean, Influence of nuclear data parameters on integral experiment assimilation using cook’s distance, in EPJ Web of Conferences, vol. 211, (EDP Sciences, 2019a), p. 07001

    Google Scholar 

  • D. Kumar et al., D4.2: Uncertainty analysis and implementation. COMPOSELECTOR Project Report (Task 4.1) (2019b)

    Google Scholar 

  • D. Kumar, Y. Koutsawa, G. Rauchs, M. Marchi, C. Kavka, S. Belouettar, Efficient uncertainty quantification and management in the early stage design of composite applications. Compos. Struct. 251, 112538 (2020)

    Article  Google Scholar 

  • D. Kumar, S. Alam, T. Ridwan, C.S. Goodwin, Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses. Energy 227, 120400 (2021)

    Article  Google Scholar 

  • D. Kumar, M. Marchi, S.B. Alam, C. Kavka, Y. Koutsawa, G. Rauchs, S. Belouettar, Multi-criteria decision making under uncertainties in composite materials selection and design. Compos. Struct. 279, 114680 (2022)

    Article  Google Scholar 

  • S. Poles, MOGA-II An Improved Multi-Objective Genetic Algorithm, Estecotechnical Report, vol 6 (2003)

    Google Scholar 

  • C. Poloni, V. Pediroda, Ga coupled with computationally expensive simulations: tools to improve efficiency (1997): 267–288 https://arts.units.it/handle/11368/2545751 ISBN: 0471977101

  • M. Rahman, A. Khan, S. Anowar, Md Al–Imran, R. Verma, D. Kumar, K. Kobayashi, S. Alam, Leveraging Industry 4.0––Deep Learning, Surrogate Model and Transfer Learning with Uncertainty Quantification Incorporated into Digital Twin for Nuclear System. ar**v preprint ar**v:2210.00074 (2022)

    Google Scholar 

  • R. Verma, D. Kumar, K. Kobayashi, S. Alam, Reliability-Based Robust Design Optimization Method for Engineering Systems with Uncertainty Quantification. ar**v preprint ar**v:2210.07521 (2022)

    Google Scholar 

Download references

Acknowledgement

The computational part of this work was supported in part by the National Science Foundation (NSF) under Grant No. OAC-1919789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kobayashi, K. et al. (2023). Data-Driven Multiscale Modeling and Robust Optimization of Composite Structure with Uncertainty Quantification. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-72322-4_207-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72322-4_207-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72322-4

  • Online ISBN: 978-3-030-72322-4

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Navigation