The Mathematical Aspects of Some Problems from Coding Theory

  • Chapter
  • First Online:
Research in Computer Science in the Bulgarian Academy of Sciences

Part of the book series: Studies in Computational Intelligence ((SCI,volume 934))

  • 282 Accesses

Abstract

We briefly review the history and main research directions of the research in department “Mathematical Foundations of Informatics” (MFI) at the Institute of Mathematics and Informatics (IMI) of the Bulgarian Academy of Sciences, founded and headed by Professor Stefan Dodunekov (1945–2012). We describe two major themes which stay in the focus of MFI for many years. We present results and pose some open problems, as well as directions for future research.

Peter Boyvalenkov—The research of this author was supported, in part, by a Bulgarian NSF contract DN02/2-2016. Ivan Landjev—This research was supported by the Research Fund of Sofia University under contract No 80-10-81/15.04.2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Named after a Dutch botanist who posed the problem in 1930 while studying the distribution of pores on pollen grains.

  2. 2.

    This name is inspired by the behaviour of the test functions.

  3. 3.

    The support of a code is the set of all coordinate positions which are not identically zero.

References

  1. Abatangelo, V., Larato, B.: Near-MDS codes arising from algebraic curves. Discret. Math. 301(1), 5–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abatangelo, V., Larato, B.: Elliptic near-MDS codes. Des. Codes Cryptogr. 46, 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  4. Baicheva, T., Dodunekov, S., Kazakov, P.: On the cyclic redundancy-check codes with 8-bit redundancy. Comput. Commun. 21, 1030–1033 (1998)

    Article  MATH  Google Scholar 

  5. Baicheva, T., Dodunekov, S., Kazakov, P.: On the undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy. IEE Proc. Commun. 147, 253–256 (2000)

    Article  MATH  Google Scholar 

  6. Baicheva, T.: Determination of the best CRC codes with up to 10-bit redundancy. IEEE Trans. Commun. 56, 1214–1220 (2008)

    Article  Google Scholar 

  7. Ball, S.: On sets of vectors of a finite vector space in which every subset of a basis is a basis. J. Eur. Math. Soc. 14, 733–748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, S., De Beule, J.: On sets of vectors of a finite vector space in which every subset of a basis is a basis II. Des. Codes Cryptogr. 65, 323–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ball, S., Blokhuis, A.: An easier proof of the maximal arcs conjecture. Proc. Am. Math. Soc. 126, 3377–3380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ball, S., Blokhuis, A., Mazzocca, F.: Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17, 31–41 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ball, S., Hirschfeld, J.: Bounds on \((n, r)\)-arcs and their application to linear codes. Finite Fields Appl. 11, 326–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bartoli, D., Marcugini, S., Pambianco, F.: The non-existence of some NMDS codes and the extremal sizes of complete \((n,3)\)-arcs in \(PG(2,16)\). Des. Codes Cryptogr. 72(1), 129–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Boer, M.: Almost MDS codes. Des. Codes Cryptogr. 9(2), 143–155 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonisoli, A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer (2019) (to appear)

    Google Scholar 

  16. Bose, R.C.: Mathematical theory of the symmetric factorial design. Sankhya 8, 107–166 (1947)

    MathSciNet  MATH  Google Scholar 

  17. Boyvalenkov, P.: Extremal polynomials for obtaining bounds for spherical codes and designs. Discr. Comp. Geom. 14, 167–183 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boyvalenkov, P., Danev, D., Bumova, S.: Upper bounds on the minimum distance of spherical codes. IEEE Trans. Inf. Theory 41, 1576–1581 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boyvalenkov, P., Danev, D., Landgev, I.: On maximal spherical codes II. J. Combin. Des. 7, 316–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boyvalenkov, P., Dodunekov, S., Musin, O.: A survey on the kissing numbers. Serdica Math. J. 38, 507–522 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Universal lower bounds for potential energy of spherical codes. Constr. Approx. 44, 385–415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: On spherical codes with inner products in prescribed interval. Des. Codes Cryptogr. 87, 299–315 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Energy bounds for codes in polynomial metric spaces. Anal. Math. Phys. (2019) (to appear). ar**v:1804.07462. https://springer.longhoe.net/article/10.1007/s13324-019-00313-x

  24. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Next levels universal bounds for spherical codes: the Levenshtein framework lifted. Submitted (2019). ar**v:1906.03062. https://urldefense.proofpoint.com/v2/url?u=-3A__www.ams.org_journals_mcom_2021-2D90-2D329_S0025-2D5718-2D2021-2D03621-2D2_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=dRWH_06vC_UztnDis8AvFdkc_1wCChKvYhvz_oR6rpc&m=QyCZkpKw4bcscq5XSWjG_Hh6_NsoGWGip5fB_vrj_yw&s=97-lTiWnzjHmcjEvKcjYouDKSq2Mkimx4fXUQSyZtN4&e=

  25. Bush, K.A.: Orthogonal arrays of index unity. Ann. Math. Statist. 23, 426–434 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  26. Calderbank, A., Hammons, A., Vijay Kumar, P., Sloane, N., Solé, P.: A linear construction for certain Kerdock and Preparata codes. Bull. AMS 29, 218–222 (1993)

    Google Scholar 

  27. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Constantinescu, I., Heise, W.: A metric for codes over residue class rings. Probl. Inf. Transm. 33(3), 208–213 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    Book  MATH  Google Scholar 

  30. Delsarte, P.: An algebraic approach to the association schemes in coding theory. Philips Res. Rep. Suppl. 10 (1973)

    Google Scholar 

  31. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. Trans. Inf. Theory 44, 2477–2504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dimitrov, M., Baicheva, T., Esslinger, B.: Efficient generation of cryptographically strong S-boxes with high nonlinearity. Submitted

    Google Scholar 

  34. Dodunekov, S.: Optimal linear codes. DrSci Dissertation, IMI-BAS (1986)

    Google Scholar 

  35. Dodunekov, S., Landjev, I.: On near-MDS codes. J. Geom. 54, 30–43 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dodunekov, S., Landjev, I.: On the quaternary \([11,6,5]\) and \([12,6,6]\) codes. In: Gollmann, D. (ed.) Applications of Finite Fields. IMA Conference Series 59, pp. 75–84. Clarendon Press, Oxford (1996)

    Google Scholar 

  37. Dodunekov, S., Landjev, I.: Near-MDS codes over some small fields. Discr. Math. 213, 55–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dodunekov, S., Simonis, J.: Codes and projective multisets. Electron. J. Comb. 5, R37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dumer, I.I., Zinoviev, V.A.: Some new maximal codes over \(\mathbb{GF}(4)\). Problemi Peredachi Informacii 14, 24–34 (1978). (in Russian)

    MathSciNet  Google Scholar 

  40. Ericson, T., Zinoviev, V.: Codes on Euclidean spheres. Elsevier Science B. V. (2001)

    Google Scholar 

  41. Faldum, A., Willems, W.: Codes of small defect. Des. Codes Cryptogr. 10, 341–350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giulietti, M.: On the extendability of near-MDS elliptic codes. AAECC 15(1), 1–11 (2004)

    Article  MATH  Google Scholar 

  43. Glynn, D.G.: The non-classical 10-arc of \({\rm PG}(4,9)\). Discret. Math. 59, 43–51 (1986)

    Article  MATH  Google Scholar 

  44. Hirschfeld, J.W.P.: Rational curves on quadrics over finite fields of characteristic two. Rend. Mat. 3, 772–795 (1971)

    MathSciNet  Google Scholar 

  45. Hirschfeld, J. W. P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Proceedings of the Fourth Isle of Thorns Conference Developments in Mathematics, vol. 3. Kluwer, pp. 201–246 (2001)

    Google Scholar 

  46. Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Comb. 7(11) (2000)

    Google Scholar 

  47. Ivanov, G., Nikolov, N., Nikova, S.: Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties. Cryptogr. Commun. Discret. Struct. Boolean Funct. Seq. 8, 247–276 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Ivanov, G., Nikolov, N., Nikova, S.: Cryptographically strong S-boxes generated by modified immune algorithm. In: Pasalic, E., Knudsen, L.R. (eds.) International Conference on Cryptography and Information Security “BalkanCryptSec 2015”. Lecture Notes in Computer Sciences, vol. 9540, pp. 31–42 (2016)

    Google Scholar 

  49. Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Probl. Inf. Transm. 14, 1–17 (1978)

    MathSciNet  Google Scholar 

  50. Kazakov, P.: Fast calculation of the number of minimum-weight words of CRC codes. IEEE Trans. Inf. Theory 47, 1190–1195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kerdock, A.M.: A class of low-rate nonlinear binary codes. Inf. Control 20, 182–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  52. Landjev, I., Vanderdriesche, P.: On the rank of incidence matrices in projective Hjelmslev spaces. Des. Codes Cryptogr. 73, 615–623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lang, S.: Algebra, 2nd edn. Addison-Wesley Publ, Company (1984)

    Google Scholar 

  54. Levenshtein, V.I.: On bounds for packings in n-dimensional Euclidean space, Dokl. Akad. Nauk SSSR 245, 1299–1303. in Russian. English translation in Soviet Math. Dokl. 20, 417–421 (1979)

    Google Scholar 

  55. Levenshtein, V.I.: Bounds for packings in metric spaces and certain applications. Probl. Kibernetiki 40, 44–110 (1983). (in Russian)

    Google Scholar 

  56. Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25, 1–82 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Levenshtein, V.I.: Universal bounds for codes and designs (Ch. 6). In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam, pp. 499–648 (1998)

    Google Scholar 

  58. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-correcting Codes. North Holland, North Holland Math. Library, vol. 16. Amsterdam (1977)

    Google Scholar 

  59. Marcugini, S., Milani, A., Pambianco, F.: Maximal \((n,3)\)-arcs in \({\rm PG}(2,11)\). Discret. Math. 208/209, 421–426 (1999)

    Google Scholar 

  60. Marcugini, S., Milani, A., Pambianco, F.: NMDS codes of maximal length over \(F_q\), \(8\le q\le 11\). IEEE Trans. Inf. Theory 48(4), 963–966 (2002)

    Article  MATH  Google Scholar 

  61. Marcugini, S., Milani, A., Pambianco, F.: Classification of the \((n,3)\)-arcs in \({\rm PG}(2,7)\). J. Geom. 80, 179–184 (2004)

    MathSciNet  MATH  Google Scholar 

  62. Marcugini, S., Milani, A., Pambianco, F.: Maximal \((n,3)\)-arcs in \({\rm PG}(2,13)\). Discret. Math. 294, 139–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Marcugini, S., Milani, A., Pambianco, F.: Classification of linear codes exploting an invariant. Contrib. Discret. Math. 1(1), 1–7 (2006)

    MATH  Google Scholar 

  64. Musin, O.: The kissing number in four dimensions. Ann. Math. 168, 1–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nechaev, A.A.: Kerdock code in cyclic form. Disk. matematika 1(4), 123–139 (1989) (in Russian). English version: Discret. Math. Appl. 1(4), 365–384 (1991)

    Google Scholar 

  66. Nechaev, A.A., Kuzmin, A.S.: Linearly presentable codes. In: Proceedings of the IEEE International Symposium on Information Theory and Its Applications (Victoria B. C., Canada), pp. 31–34 (1996)

    Google Scholar 

  67. Odlyzko, A.M., Sloane, N.J.A.: New bounds on the number of unit spheres that can touch a unit sphere in \(n\) dimensions. J. Comb. Theory A 26, 210–214 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  68. Preparata, F.P.: A class of optimum non-linear double-error-correcting codes. Inf. Control 13(4), 378–400 (1968)

    Article  MATH  Google Scholar 

  69. Segre, B.: Ovals in a finite projective plane. Can. J. Math. 7, 414–416 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  70. Segre, B.: Sui \(k\)-archi nei piani finiti di caratteristica due. Rev. Math. Pures Appl. 2, 289–300 (1957)

    MathSciNet  MATH  Google Scholar 

  71. Sidelnikov, V.M.: On extremal polynomials used to estimate the size of codes. Probl. Inf. Transm. 16, 174–186 (1980)

    MathSciNet  Google Scholar 

  72. Szegő, G.: Orthogonal Polynomials, vol. 23. AMS Col. Publ., Providence, RI (1939)

    Google Scholar 

  73. Tagarev, T.: ICT research for security and defence (this is a chapter in this volume)

    Google Scholar 

  74. Tagarev, T., Polimirova, D.: Main considerations in elaborating organizational information security policies. In: Proceedings of 20th International Conference on Computer Systems and Technologies (CompSysTech’19), 21-22 June 2019, Ruse, Bulgaria

    Google Scholar 

  75. Tagarev, T., Sharkov, G.: Computationally intensive functions in designing and operating distributed cyber secure and resilient systems. In: Proceedings of 20th International Conference on Computer Systems and Technologies (CompSysTech’19), 21-22 June 2019, Ruse, Bulgaria

    Google Scholar 

  76. Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. École. Norm. Sup. 2(4), 521–560 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yudin, V.A.: Minimal potential energy of a point system of charges. Discret. Mat. 4, 115–121 (1992) (in Russian). English translation: Discr. Math. Appl. 3, 75–81 (1993)

    Google Scholar 

  78. Zong, C.: Sphere Packings. Springer, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Landjev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyvalenkov, P., Landjev, I. (2021). The Mathematical Aspects of Some Problems from Coding Theory. In: Atanassov, K.T. (eds) Research in Computer Science in the Bulgarian Academy of Sciences. Studies in Computational Intelligence, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-72284-5_13

Download citation

Publish with us

Policies and ethics

Navigation