Ophthalmology of Scinciformata and Laterata: Skinks, Lizards, and Relatives

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology
  • 1689 Accesses

Abstract

One of the most diverse groups of terrestrial vertebrates is the reptile order Squamata, containing the lizards, snakes, and amphisbaenians (Pyron et al. 2013). Members can be found on every continent except Antarctica and some even in the ocean. Consequently, squamates also come in many shapes and sizes, possibly the most unique of which are the amphisbaenians. Phylogenetic grou** of squamates has been a recent topic of debate, largely due to the controversy between morphologic-based and molecular-based systems. New grou**s meant new names as well. Scinciformata is the first branch of a group of reptiles united by the presence of one egg tooth (Vidal and Hedges 2005). It includes the skink-like lizards and families such as Scincidae and Xantusiidae. The next closely related group is the Laterata, named for the presence of tile-like scales on its members’ bodies. Of the Laterata, Amphisbaenians are among the most misunderstood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alworth LC, Hernandez SM, Divers SJ (2011) Laboratory reptile surgery: principles and techniques. J Am Assoc Lab Anim 50(1):11–26

    CAS  Google Scholar 

  • Araujo NLLC, Raposo AC, Muramoto C, de Meneses ĂŤD, Bittencourt MV, Martins Filho EF, Oriá AP (2017) Evaluation of selected ophthalmic diagnostic tests in green iguanas (Iguana iguana). J Exotic Pet Med 26(3):176–187

    Google Scholar 

  • Atkins JB, Franz-Odendaal TA (2016) The sclerotic ring of squamates: an evo-devo-eco perspective. J Anat 229:503–513

    PubMed  PubMed Central  Google Scholar 

  • Baccari GC, Minucci S, Di Matteo L, Chieffi G (1990) Harderian gland and the lacrimal gland of the lizard Podarcis s. sicula: histology, histochemistry, and ultrastructure. Anat Rec 226(3):269–278

    CAS  PubMed  Google Scholar 

  • Banzato T, Selleri P, Veladiano IA et al (2012) Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana), common tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps). BMC Vet Res 8(1):1–11

    Google Scholar 

  • Banzato T, Hellebuyck T, Van Caelenberg A, Saunders JH, Zotti A (2013) A review of diagnostic imaging of snakes and lizards. Vet Rec 173(2):43–49

    CAS  PubMed  Google Scholar 

  • Barten S, Simpson S (2019) Lizard taxonomy, anatomy, and physiology. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 63–74

    Google Scholar 

  • Bellairs A’A (1965) Cleft palate, microphthalmia and other malformations in embryos of lizards and snakes. Proc Zool Soc Lond 144:239–251

    Google Scholar 

  • Bellairs A’A (1981) Congenital and developmental diseases. In: Cooper J, Jackson OF (eds) Diseases of the Reptilia. Academic Press, London, p 469

    Google Scholar 

  • Bellairs A’A, Boyd JD (1947) The lachrymal apparatus in lizards and snakes. I. The brille, the orbital glands, lachrymal canaliculi and origin of the lacrimal duct. Proc Zool Soc Lond 117(1):81–108

    Google Scholar 

  • Bonin JJ (1965) The eye of Agamodon anguliceps Peters (Reptilia, Amphisbaenia). Copeia 1965:324–331

    Google Scholar 

  • Canei J, Burtea C, Nonclercq D (2020) Comparative study of the visual system of two psammophilic lizards (Scincus scincus & Eumeces schneideri). Vision Res 171:17–30

    PubMed  Google Scholar 

  • Cernuda-Cernuda R, DeGrip WJ, Cooper HM, Nevo E, GarcĂ­a-Fernández JM (2002) The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. Invest Ophthalmol Vis Sci 43:2374–2383

    PubMed  Google Scholar 

  • Cooper JE (1975) Exophthalmia in a rhinoceros viper (Bitis nasicornis). Vet Rec 97:130–131

    CAS  PubMed  Google Scholar 

  • Cooper JE, McClelland MH, Needham JR (1980) An eye infection in laboratory lizards associated with an Aeromonas sp. Lab Anim 14(2):149–151

    CAS  PubMed  Google Scholar 

  • Duke-Elder S (1958) Reptiles. In: Duke-Elder S (ed) System of ophthalmology, The eye in evolution, vol I. Mosby, St. Louis, pp 353–395

    Google Scholar 

  • Foureaux G, Egami MI, Jared C et al (2010) Rudimentary eyes of squamate fossorial reptiles (Amphisbaenia and Serpentes). Anat Rec 293(2):351–357

    Google Scholar 

  • Gans C (1978) The characteristics and affinities of the Amphisbaenia. Trans Zool Soc Lond 34:347–416

    Google Scholar 

  • Gans C, Bonin J (1963) Acoustic activity recorder for burrowing animals. Science 140:398

    CAS  PubMed  Google Scholar 

  • Gardiner DW, Baines FM, Pandher K (2009) Photodermatitis and photokeratoconjunctivitis in a ball python (Python regius) and a blue-tongue skink (Tiliqua spp.). J Zoo Wildl Med 40(4):757–766

    PubMed  Google Scholar 

  • Girling S (2013) Reptile and amphibian handling and chemical restraint. In: Veterinary nursing of exotic pets. John Wiley & Sons, Sussex, UK, pp 272–285

    Google Scholar 

  • Guerra-Fuentes R, Roscito J, Nunes P, Oliveira-Bastos P, Antoniazzi M, Jared C, Rodrigues M (2014) Through the looking glass: the spectacle in Gymnophthalmid lizards. Anat Rec 297:496–504

    Google Scholar 

  • Hall MI (2008) Comparative analysis of the size and shape of the lizard eye. Zoology (Jena) 111(1):62–75

    PubMed  Google Scholar 

  • Hamilton HL, Mitchell MA, Williams J, Tully TN, Glaze MB (1999) Orbital abscess in a green iguana, Iguana iguana. Bull Assoc Reptl Amphib Vet 9(3):27–31

    Google Scholar 

  • Hoffmann I (2011) Eye. In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets: birds, small mammals, reptiles. SchlĂĽtersche, Hannover, pp 354–357

    Google Scholar 

  • Holmberg BJ (2008) Ophthalmology of exotic pets. In: Maggs D, Miller P, Ofri R (eds) Slatter’s fundamentals of veterinary ophthalmology, 4th edn. Saunders, St. Louis, pp 427–441

    Google Scholar 

  • Kern TJ, Colitz CMH (2013) Exotic animal ophthalmology. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology, 5th edn. John Wiley & Sons, Ames, Iowa, pp 1758–1765

    Google Scholar 

  • Kiefer I, Pees M (2011) Computed tomography (CT). In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets. Schlutersche Verlag, Hannover, pp 358–367

    Google Scholar 

  • Labelle A (2016) Special senses: eyes. In: Mitchell M, Tully TN Jr (eds) Current therapy in exotic pet practice. Elsevier, St. Louis, pp 435–459

    Google Scholar 

  • Lawton MPC (2019a) Ophthalmology. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 721–735

    Google Scholar 

  • Lawton MPC (2019b) Eye. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 1024–1027

    Google Scholar 

  • Longrich NR, Vinther J, Pyron RA, Pisani D, Gauthier JA (2015) Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proc Biol Sci 282(1806):20143034

    PubMed  PubMed Central  Google Scholar 

  • Martin M, Le Galliard J-F, Meylan S, Loew ER (2015) The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J Exp Biol 218:458–465

    PubMed  Google Scholar 

  • Mayer J, Pizzirani S, Desena R (2010) Bilateral exophthalmos in an adult iguana (Iguana iguana) caused by an orbital abscess. J Herpetol Med Surg 20(1):5–10

    Google Scholar 

  • Miller EA, Green SL, Otto GM, Bouley DM (2001) Suspected hypovitaminosis A in a colony of captive green anoles (Anolis carolinensis). Contemp Top Lab Anim Sci 40(2):18–20

    CAS  PubMed  Google Scholar 

  • Millichamp NJ (1997) Management of ocular disease in exotic species. Semin Avian Exotic Pet Med 6:152–159

    Google Scholar 

  • Millichamp NJ (2002) Ophthalmic disease in exotic species. Vet Clin North Am Exot Anim Pract 5(2):223–241

    PubMed  Google Scholar 

  • Millichamp NJ, Jacobson ER, Wolf ED (1983) Disease of the eye and ocular adnexae in reptiles. J Am Vet Med Assoc 183(11):1205–1212

    CAS  PubMed  Google Scholar 

  • Montiani-Ferreira F (2001) Ophthalmology. In: Fowler ME, Cubas ZS (eds) Biology, medicine and surgery of South American wild animals. Iowa State University Press, Ames, Iowa, pp 437–456

    Google Scholar 

  • Names G, Martin M, Badiane A, Le Galliard JF (2019) The relative importance of body size and UV coloration in influencing male-male competition in a lacertid lizard. Behav Ecol Sociobiol 73(7):1–14

    Google Scholar 

  • New ST, Hemmi JM, Kerr GD, Bull CM (2012) Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa). Anat Rec 295:1727–1735

    Google Scholar 

  • Nikitina NV, Maughan-Brown B, O’riani MJ, Kidson SH (2004) Postnatal development of the eye in the naked mole rat (Heterocephalus glaber). Anat Rec 277A:317–337

    Google Scholar 

  • O’Malley B (2005) Lizards. In: O’Malley B (ed) Clinical anatomy and physiology of exotic species. W.B. Saunders, Edinburgh, UK, pp 57–75

    Google Scholar 

  • Payne F (1906) The eyes of the blind vertebrates of North America: VII. The eyes of Amphisbaena punctata (Bell). A blind lizard from Cuba. Biol Bull 11:60–70

    Google Scholar 

  • Pees M (2011) Radiographic investigation. In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets: birds, small mammals, reptiles. SchlĂĽtersche, Hannover, pp 310–312

    Google Scholar 

  • PĂ©rez i de Lanuza G, Font E (2014) Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. J Exp Biol 217:2899–2909

    PubMed  Google Scholar 

  • Pough FH, Janis CM, Heiser JB (2003) A Vida Dos Vertebrados, 3rd edn. Atheneu, SĂŁo Paulo

    Google Scholar 

  • Pyron R, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93

    PubMed  PubMed Central  Google Scholar 

  • Raynaud A (1982) Effects of cytosine-arabinofuranoside on the development of reptilian embryos (Lacerta viridis, Laur. and Anguis fragilis, L). Arch Anat Microsc Morphol Exp 71(2):127–146

    CAS  PubMed  Google Scholar 

  • Reavill D, Schmidt RE (2012) Pathology of the reptile eye and ocular adnexa. Proc ARAV:87–97

    Google Scholar 

  • Rival F, Linsart A, Isard PF, Besson C, Dulaurent T (2015) Anterior segment morphology and morphometry in selected reptile species using optical coherence tomography. Vet Ophthalmol 18(Suppl 1):53–60

    PubMed  Google Scholar 

  • Röll B (2001) Retina of Bouton’s skink (Reptilia, Scincidae): visual cells, fovea, and ecological constraints. J Comp Neurol 436(4):487–496

    PubMed  Google Scholar 

  • Rosenwax A, Stephens T (2018) Diseases of the organs of special senses. In: Doneley B, Monks D, Johnson R, Carmel B (eds) Reptile medicine and surgery in clinical practice. John Wiley & Sons Ltd, Oxford, UK, pp 357–368

    Google Scholar 

  • Sabater M, PĂ©rez M (2013) Congenital ocular and adnexal disorders in reptiles. Vet Ophthalmol 16(1):47–55

    PubMed  Google Scholar 

  • Sato Y (1977) Comparative morphology of the visual system of some Japanese species of Soricoidea (Superfamily) in relation to life habits. J Hirnforsch 18:531–546

    CAS  PubMed  Google Scholar 

  • Simões BF, Sampaio FL, Jared C, Antoniazzi MM, Loew ER, Bowmaker JK, Rodriguez A, Hart NS, Hunt DM, Partridge JC, Gower DJ (2015) Visual system evolution and the nature of the ancestral snake. J Evol Biol 28:1309–1320

    PubMed  Google Scholar 

  • Taylor EH (1951) Concerning Oligocene amphisbaenid reptiles. Univ Kans Sci Bull 34:521–579

    Google Scholar 

  • Thomas CL, Artwohl JE, Pearl RK, Gardiner CH (1996) Swollen eyelid associated with Foleyella sp. infection in a chameleon. J Am Vet Med Assoc 209(5):972–973

    CAS  PubMed  Google Scholar 

  • Underwood G (1970) The eye. In: Gans C, Parsons TS (eds) Biology of the Reptilia, Morphology B, vol 2. Academic Press, London, pp 1–97

    Google Scholar 

  • Vidal N, Hedges SB (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 328(10–11):1000–1008

    CAS  PubMed  Google Scholar 

  • Wagner H (1932) Ăśber den farbensinn der eidechsen. Z Vgl Physiol 18:378–392

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science

    Google Scholar 

  • Williams DL (2012) Ophthalmology of exotic pets. John Wiley and Sons, Ames, Iowa, pp 159–196

    Google Scholar 

  • Williams DL (2017) Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function. Eye 31:167–172

    CAS  PubMed  Google Scholar 

  • Williams DL (2019) The reptile eye. In: Girling SJ, Raiti P (eds) BSAVA manual of reptiles, 3rd edn. British Small Animal Veterinary Association, Quedgeley, pp 273–283

    Google Scholar 

  • Williams DL, MacGregor S, Sainsbury AW (2000) Evaluation of bacteria isolated from infected eyes of captive, non-domestic animals. Vet Rec 146(18):515–518

    CAS  PubMed  Google Scholar 

  • Wojick KB, Naples LM, Knapp CR (2013) Ocular health assessment, tear production, and intraocular pressure in the Andros Island iguana (Cyclura cychlura cychlura). J Zoo Wildl Med 44(1):116–123

    PubMed  Google Scholar 

  • Yovanovich CAM, Pierotti MER, Rodrigues MT, Grant T (2019) A dune with a view: the eyes of a neotropical fossorial lizard. Front Zool 16:17

    PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Goedhals J, VerdĂş-Ricoy J et al (2020) Comparative analysis of the eye anatomy in fossorial and surface-living skink species (Reptilia: Scincidae), with special reference to the structure of the retina. Acta Zool 101:311–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Smith Fleming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleming, K.S. (2022). Ophthalmology of Scinciformata and Laterata: Skinks, Lizards, and Relatives. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_11

Download citation

Publish with us

Policies and ethics

Navigation