Wire Arc Spraying

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Wire arc spraying (WAS) is one of the oldest of thermal spray processes. Compared to alternate surface modification technologies, WAS is most competitive because of its high deposition rates up to 25 kg/h, favorable economics and potential use for a wide range of applications mostly for corrosion protection of infrastructure such as bridges and metallic constructions, as well as in the marine and automotive industry. The technology is based on the concept of sticking an arc between two wires, or a single wire and a non-consumable electrode. As the tip of the wire(s) melts, the formed molten metal is atomized by a high-velocity gas stream, forming a spray of molten metal droplets that is projected toward the substrate on which it is deposited forming the coating. The atomizing gas being essentially at room temperature, the substrate is not subjected to heated during the spray process. The main limitation of the technology is that it works best for the spraying of ductile metallic wires, such as aluminum, zinc, or steels. The development of the “cord–wire” approach in which a wire is formed through the use of a ductile metallic foil as envelop filled with a ceramic or composite fine powder allowed the expansion of the technology to new industrial-scale wear resistance applications involving the spraying of carbide-based cermets such as Cr3C2 with Fe and FeC, WC/W2C + Fe, WC/TiC + Fe, Cr, Ni. The technology can be combined with epoxy or silicon polymer coating for the sealing open porosity in the coating provided that the service temperature is below (< 200 °C). In this chapter, the basic concepts behind the technology are discussed highlighting the fundamental phenomena involved. This is followed by a review of industrial torch designs with emphasis on their relative advantages, limitation, and arc-droplet dynamics and their impact on coating quality. Process technology is reviewed next with examples of some of the leading WAS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Atmospheric Plasma Spraying

BSE:

Backscattered Electron

CAS:

Cord Arc Spraying

CCD:

Charge-Coupled Device

CFD:

Computational Fluid Dynamics

COF:

Coefficient of Fiction

DC:

Direct Current

DTA:

Differential Thermogravimetric Analysis

EDS:

Electron Diffraction Spectroscopy

EIS:

Electrochemical Impedance Spectroscopy

EMI:

Electromagnetic Interference

HD-WAS:

High Definition-Wire Arc Spraying

HV:

High Velocity

ISPC:

International Symposium on Plasma Chemistry

ITSC:

International Thermal Spray Conference

LHS:

Left-Hand Side

LP-WAS:

Low Pressure-Wire Arc Spraying

MHP:

Machine Hammer Peening

PSD:

Particle Size Distribution

PT-WAS:

Plasma Transferred-Wire Arc Spraying

PVD:

Physical Vapor Deposition

RF:

Radiofrequency

RHS:

Right-Hand Side

SEC:

Saturated Calomel Electrode

SEM:

Scanning Electron Microscopy

STS:

Special Treatment Steel

SWAS:

Single Wire Arc Spraying

SW-VAS:

Single Wire-Vacuum Arc Spraying

TEM:

Transmission Electron Microscopy

TWAS:

Twin Wire Arc Spraying

UTSC:

United Thermal Spray Conference

WAS:

Wire Arc Spraying

XRD:

X-Ray Diffraction

References

  • Abedini, A., A. Pourmousa, S. Chandra, and J. Mostaghimi. 2006. Effect of substrate temperature on the properties of coatings and splats deposited by wire arc spraying. Surface & Coatings Technology 201 (2006): 3350–3358.

    Article  CAS  Google Scholar 

  • Benary, R. 2000. Thermal spray gun extension and gas jet member, therefore. US Patent US Patent No. 6,091,042.

    Google Scholar 

  • Bobzin, K., F. Ernst, J. Zwick, T. Schlaefer, D. Cook, K. Nassenstein, A. Schwenk, F. Schreiber, T. Wenz, G. Flores, and M. Hahn. 2008. Coating bores of light metal engine blocks with a nanocomposite material using the plasma transferred wire arc thermal spray process. Journal of Thermal Spray Technology 17 (3): 344–351.

    Article  CAS  Google Scholar 

  • Bolot, R., R. Bonnet, G. Jandin, and C. Coddet. 2001. Application of CAD to CFD for the wire arc spray process. In Proceedings of ITSC-2001 Singapore, ed. C.C. Berndt, K.A. Khor, and E. Lugscheider, 889–894. Materials Park, OH: ASM International.

    Google Scholar 

  • Bolot, R., H. Liao, C. Mateus, C. Coddet, and J.-M. Bordes. 2007. Optimization of a rotating twin wire-arc spray gun. In Proceedings of ITSC-2007, Bei**g, People’s Republic of China, ed. B. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, vol. 5–6, 783–790. Materials Park, OH: ASM International.

    Google Scholar 

  • Bolot, R., M.-P. Planche, H. Liao, and C. Coddet. 2008. A three-dimensional model of the wire-arc spray process and its experimental validation. Journal of Materials Processing Technology: 94–105.

    Google Scholar 

  • Branagan, D.J., W.D. Swank, D.C. Haggard, and J.R. Fincke. 2001. Wear resistant amorphous and nanocomposite steel coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 32A (10): 2615–2621.

    Article  CAS  Google Scholar 

  • Branagan, D.J., M. Breitsameter, B.E. Meacham, and V. Belashchenko. 2004. High-performance nanoscale composite coatings for boiler applications. Journal of Thermal Spray Technology 14 (2): 196–204.

    Article  Google Scholar 

  • Carlson R. R. 2005. Single wire arc spray. PhD Thesis, University of Minnesota.

    Google Scholar 

  • Carlson, R., and J.V.R. Heberlein. 2001. Effects of operating parameters on high definition single wire arc spraying. In Proceedings of ITSC-2001, Singapore, ed. C.C. Berndt, K.A. Khor, and E. Lugscheider, 447–453. Materials Park, OH: ASM International.

    Google Scholar 

  • Carlson R. and JVR Heberlein 2002. Single-wire arc spray apparatus and methods for using same. US Patent US Patent No. 6,610,959 B2,

    Google Scholar 

  • Carlson, R., J.V.R. Heberlein, N.A. Hussary, and K. Shi. 2000. High-definition single-wire-arc-spray. In Proceedings of 1st. ITSC-2000, Montreal, Quebec, ed. C.C. Berndt, 709–716. Materials Park, OH: ASM International.

    Google Scholar 

  • Chang, C.H., M.C. Jeng, C.Y. Su, and T.S. Huang. 2011. A study of Wear and corrosion resistance of arc-sprayed Ni-Ti composite coatings. Journal of Thermal Spray Technology 20 (6): 1278–1285.

    Article  CAS  Google Scholar 

  • Chen, Y., X. Liang, S. Wei, Y. Liu, and B. Xu. 2009a. Heat treatment induced intermetallic phase transition of arc-sprayed coating prepared by the wires combination of aluminum-cathode and steel-anode. Applied Surface Science 255: 8299–8304.

    Article  CAS  Google Scholar 

  • Chen, Y., X. Liang, Y. Liu, and B. Xu. 2009b. Numerical analysis of the effect of arc spray gun configuration parameters on the external gas flow. Journal of Materials Processing Technology 209 (2009): 5924–5931.

    Article  CAS  Google Scholar 

  • Chen, Y., X. Liang, S. Wei, X. Chen, and B. Xu. 2012. Numerical simulation of the twin-wire arc spraying process: Modeling the high velocity gas flow field distribution and droplets transport. Journal of Thermal Spray Technology 21 (2): 263–274.

    Article  CAS  Google Scholar 

  • Cheng, J., Q. Liu, B. Sun, X. Liang, and B. Zhang. 2017. Structural and tribological characteristics of nanoscale FePSiBNb coatings. Journal of Thermal Spray Technology 26: 530–538.

    Article  CAS  Google Scholar 

  • Chigier, N. 1981. Energy, combustion and environment. New York: McGraw Hill.

    Google Scholar 

  • Chun-long, Y., A. Yun-qi, and S. Ya-tan. 2009. Three years corrosion tests of nanocomposite epoxy sealer for metalized coatings on the East China Sea, in thermal spray 2009. In Proceedings of the international thermal spray conference, ed. B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, 1090–1093. Materials Park: ASM International.

    Google Scholar 

  • Cook, D., M. Zaluzec, and K.A. Kowalsky. 2003. Development of thermal spray for automotive cylinder bores. In Proceedings of ITSC-2003, Orlando, Florida, ed. B. Marple and C. Moreau, 143–147. Materials Park, OH: ASM International.

    Google Scholar 

  • Cooke, K., G. Oliver, V. Buchanan, and N. Palmer. 2007. Optimization of the electric wire arc-spraying process for improved wear resistance of sugar mill roller shells. Surface & Coating Technology 202: 185–188.

    Article  CAS  Google Scholar 

  • Cramer, S.D., B.S. Covino Jr., G.R. Holcomb, S.J. Bullard, W.K. Collins, R.D. Govier, R.D. Wilson, and H.M. Laylor. 1999. Thermal sprayed titanium anode for cathodic protection of reinforced concrete bridges. Journal of Thermal Spray Technology 8 (1): 133–145.

    Article  CAS  Google Scholar 

  • Davis, J.R. (ed.). 2004. Handbook of thermal spray technology (Pub.) ASM international, Materials Park, OH 44073-0002, USA.

    Google Scholar 

  • Darut, G., H. Liao, C. Coddet, J.M. Bordes, and M. Diaby. 2015. Steel coating application for engine block bores by plasma transferred wire arc spraying process. Surface & Coatings Technology 268: 115–122.

    Article  CAS  Google Scholar 

  • Dubourg, L., R.S. Lima, and C. Moreau. 2002. Properties of alumina titania coatings prepared by laser-assisted air plasma spraying. Surface & Coatings Technology 201 (2007): 6278–6284.

    Google Scholar 

  • Dunkerley J. P., T. A. Friedrich and G. Irons 1999. Apparatus for rotary spraying a metallic coating. US Patent US Patent No. 5,908,670,

    Google Scholar 

  • Esfahani, E.A., H. Salimijazi, M.A. Golozar, J. Mostaghimi, and L. Pershin. 2012. Study of corrosion behavior of arc sprayed aluminum coating on mild steel. Journal of Thermal Spray Technology 21 (6): 1195–1202.

    Article  CAS  Google Scholar 

  • Fang, J.C., W.J. Xu, and Z.Y. Zhao. 2005. Arc spray forming. Journal of Materials Processing Technology 164–165: 1032–1037.

    Article  Google Scholar 

  • Fauchais, P., J.V.R. Heberlein, and M. Boulos. 2014. Thermal spray fundamentals, 1566. New York: Springer.

    Book  Google Scholar 

  • Gedzevicius, I., R. Bolot, H. Liao, and C. Coddet. 2003. Application of CFD for Wire-Arc Nozzle Geometry Improvement. In Proceedings of ITSC-2003, Orlando, Florida, ed. B. Marple and C. Moreau, 977–980. Materials Park, OH: ASM International.

    Google Scholar 

  • Gonzalez, R., H. Ashrafizadeh, A. Lopera, P. Mertiny, and A. McDonald. 2016. A review of thermal spray metallization of polymer-based structures. Journal of Thermal Spray Technology 25 (5): 897–919.

    Article  CAS  Google Scholar 

  • Grant, P.S., S.R. Duncan, A. Roche, and C.F. Johnson. 2006. Scientific, technological, and economic aspects of rapid tooling by electric arc spray forming. In Proceedings of the ITSC-2006, Seattle, Washington, ed. B. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, vol. 4, 796–801. Materials Park, OH: ASM International.

    Google Scholar 

  • Hahn, M., and A. Fischer. 2010. Characterization of thermal spray coatings for cylinder running surfaces of diesel engines. Journal of Thermal Spray Technology 19 (5): 866–887.

    Article  CAS  Google Scholar 

  • Han, M.-S., Y.-B. Woo, S.-C. Ko, Y.-J. Jeong, S.-K. Jang, and S.-J. Kim. 2009. Effects of thickness of Al thermal spray coating for STS 304. Transactions of Nonferrous Metals Society of China 19: 925–929.

    Article  CAS  Google Scholar 

  • Halter, K., A. Sickinger, L. Zysset, and S. Siegmann. 2003. Low pressure wire arc and vacuum plasma spraying of NiTi shape memory alloys. In Proceedings of ITSC-2003, Orlando, Florida, ed. B. Marple and C. Moreau, 289–295. Materials Park, OH: ASM International.

    Google Scholar 

  • He, D., N. Dong, and J. Jiang. 2007. Corrosion behavior of arc sprayed nickel-based b coatings. Journal of Thermal Spray Technology 16 (5–6): 850–586.

    Article  CAS  Google Scholar 

  • Holcomb, G.R., S.D. Cramer, S.J. Bullard, B.S. Covino Jr., W.K. Collins, R.D. Govier, and G.E. McGill. 1997. Characterization of thermal-sprayed titanium anodes for cathodic protection. In Thermal spray: A united forum for scientific and technological advances, ed. C.C. Berndt, 141–150. Materials Park, OH: ASM International.

    Google Scholar 

  • Hsiang, L.P., and G.M. Faeth. 1992. Near-limit drop deformation and secondary breakup. International Journal of Multiphase Flow 18: 635–652.

    Article  CAS  Google Scholar 

  • Hussary N.A. 1999. Fluid dynamic investigations of wire arc spraying process. MS Thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • ——— N.A. and JVR Heberlein. 2001. Atomization and particle jet interactions in the wire-arc spaying process. Journal of Thermal Spray Technolgoy 10(4) 604–610.

    Google Scholar 

  • ——— N.A. JVR Heberlein. 2007. Effect of system parameters on metal breakup and particle formation in the wire arc spray process, Journal of Thermal Spray Technology 16(1) 140–152.

    Google Scholar 

  • ——— N.A., J. Schein and JVR Heberlein 1999. Control of jet convergence in wire arc spray systems, Proceedings of UTSC-1999, Düsseldorf, Germany (E. Lugscheider and P. A. Kammer eds). ASM International, Materials Park, OH, pp 335–339.

    Google Scholar 

  • Jandin, G., M.-P. Planche, H. Liao, and C. Coddet. 2002. Relationships between in-flight particle characteristics and coating microstructure for the twin wire arc spray process. In Proceedings of ITSC-2002, Essen, ed. E. Lugscheider, 954–959. Materials Park, OH: ASM International.

    Google Scholar 

  • Kawase, R., and M. Kureishi. 1985a. Fused metal temperature in arc spraying. Transactions Japan Welding Society 16 (1): 82–88.

    CAS  Google Scholar 

  • ———. 1985b. Relation between adhesion strength of arc sprayed coating and fused metal temperature. Transactions Japan Welding Society 16 (2): 69–73.

    Google Scholar 

  • Kawase, R., M. Kureishi, and S. Minehisa. 1984a. Relation between arc spraying condition and adhesive strength of sprayed coating. Transactions Japan Welding Society 15 (2): 27–33.

    Google Scholar 

  • Kawase, R., M. Kureishi, and K. Maehara. 1984b. Arc phenomena and wire fusion in arc spraying. Transactions Japan Welding Society 15 (2): 34–39.

    Google Scholar 

  • Kelkar, M., and J.V.R. Heberlein. 2000. Physics of an arc in cross flow. Journal of Physics D: Applied Physics 33: 2172–2182.

    Article  CAS  Google Scholar 

  • ———. 2002. Wire-arc spray modeling. Plasma Chemistry and Plasma Processing 22 (1): 1–25.

    Article  CAS  Google Scholar 

  • Kelkar, M., N.A. Hussary, J. Schein, and J. Heberlein. 1968. Optical diagnostics and modeling of gas and droplet flow in wire arc spraying. In Proceedings of 15th. ITSC-1998, Nice, France, ed. C. Coddet, 329–324. Materials Park, OH: ASM International.

    Google Scholar 

  • Kharlamov, M.Yu., I.V. Krivtsun, V.N. Korzhyk, Y.V. Ryabovolyk, and O.I. Demyanov. 2015. Simulation of motion, heating, and breakup of molten metal droplets in the plasma jet at plasma-arc spraying. Journal of Thermal Spray Technology 24 (4): 659–670.

    Article  CAS  Google Scholar 

  • König, J., M. Lahres, and O. Methner. 2015. Quality designed twin wire arc spraying of aluminum bores. Journal of Thermal Spray Technology 24 (1−2): 63–74.

    Google Scholar 

  • Kowalsky, K.A., D.R. Marantz, and H. Herman. 1991. Characterization of coatings produced by the wire-arc-plasma spray process. In Proceedings of 4th NTSC-1991, Pittsburgh, Pennsylvania, ed. T.F. Bernecki, 389–394. Materials Park, OH: ASM International.

    Google Scholar 

  • Kowalsky, K.A., R. Neiser, and M.F. Smith. 1992. Diagnostic Behavior of the Wire-Arc-Plasma Spray Process. In Proceedings of Thermal Spray: NTSC-1992 Orlando, Florida, ed. C.C. Berndt, 337–342. Materials Park, OH: ASM International.

    Google Scholar 

  • Laik, A., D.P. Chakravarthy, and G.B. Kale. 2005. On characterisation of wire-arc-plasma-sprayed Ni on alumina substrate. Materials Characterization 55: 118–126.

    Article  CAS  Google Scholar 

  • Lefebvre, A.H. 1989a. Atomization and sprays, 421 pages. New York: Hemisphere Publishing Corporation.

    Google Scholar 

  • Lester T. 2005. Metallized coatings application, An overview of the flame-and arc-spraying processes used for surface finishing. Organic Finishing July/August:35–38.

    Google Scholar 

  • Li, R., Z. Zhou, D. He, Y. Wang, X. Wu, and X. Song. 2015. Microstructure and High Temperature Corrosion Behavior of Wire-Arc Sprayed FeCrSiB Coating. J. of Thermal Spray Technology 24 (5): 857–864.

    Article  Google Scholar 

  • Liao, H., Y.L. Zhu, R. Bolot, C. Coddet, and S.N. Ma. 2005. Size distribution of particles from individual wires and the effects of nozzle geometry in twin wire arc spraying. Surface and Coatings Technology 200: 2123–2130.

    Article  CAS  Google Scholar 

  • Liu, X. 2001. Arc spraying in China. Journal of Thermal Spray Technology 10 (1): 40–43.

    Article  CAS  Google Scholar 

  • Luo, L., J. Yu, S. Liu, and J. Li. 2010a, April. Thermal shock resistances of FeMnCr/Cr3C2 coatings deposited by arc spraying. Journal of Wuhan University of Technology-Material Science Edition.

    Google Scholar 

  • Luo, L.M., S.G. Liu, J. Yu, J. Luo, and J. Li. 2010b. Effect of AI content on high temperature erosion properties of arc-sprayed FeMnCrAI/Cr3C2 coatings. Transactions of Nonferrous Metals Society of China 20: 201–206.

    Article  CAS  Google Scholar 

  • Madaeni, S.S., M.E. Aalami-Aleagha, and P. Daraei. 2008. Preparation and characterization of metallic membrane using wire arc spraying. Journal of Membrane Science 320: 541–548.

    Article  CAS  Google Scholar 

  • Mansour, A., and N. Chigier. 1990. Disintegration of liquid sheets. Physics of Fluids A 2 (5): 706–719.

    Article  CAS  Google Scholar 

  • Marantz, D., and D.R. Marantz. 1990. State of the art arc spray technology. In Proceedings of thermal spray research and applications, Proceedings of the 3rd. NTSC-1990, Long Beach, California, ed. T.F. Bernecki, 113–118. Materials Park, OH: ASM International.

    Google Scholar 

  • Marantz, D.R., K.A. Kowalsky, and D. Marantz. 1991. Wire-Arc-Plasma Spray Process – Basic Principles and Its Versatility. In Proceedings of the 4th. NTSC-1991, Pittsburgh, Pennsylvania, ed. T.F. Bernecki, 381–387. Materials Park, OH: ASM International.

    Google Scholar 

  • Metallization Ltd, see https://www.metallisation.com/

  • Matthews, S., and M. Schweizer. 2013. Optimization of arc-sprayed Ni-Cr-Ti coatings for high temperature corrosion applications. Journal of Thermal Spray Technology 22 (4): 538–550.

    Article  CAS  Google Scholar 

  • McCune R. C. Jr., L. V. Reatherford and M. Zaluzec 1993. Thermally spraying metal/solid lubricant composites using wire feedstock. US Patent No. 5,194,304,

    Google Scholar 

  • Meng, F.J., B.S. Xu, S. Zhu, S.N. Ma, and W. Zhang. 2005. Oxidation performance of Fe-AI/WC composite coatings produced by high velocity arc spraying. Journal of Central South University of Technology 12 (2): 222–225.

    Article  Google Scholar 

  • Mohanty, P.S., R. Allor, P. Lechowicz, R.A. Parker, and J.E. Craig. 2003. Particle Temperature and velocity characterization in spray tooling process by thermal imaging technique. In Proceedings of ITSC-2003, Orlando, Florida, ed. B. Marple and C. Moreau, 1183–1190. Materials Park, OH: ASM International.

    Google Scholar 

  • Nakagawa, M., K. Shimoda, T. Tomoda, M. Koyama, Y. Ishikawa, and T. Nakajima. 1990. Development of mass production technology of arc spraying for automotive engine aluminum alloy valve lifters. In Proceedings of the 3rd NTSC, 457–464.

    Google Scholar 

  • Osbond, P. 1992. Plasma sprayed anti-reflection coatings for micro-wave optical components. Advanced Materials 4: 807–809.

    Article  CAS  Google Scholar 

  • Pacheo da Silva, C. et al. 1991. 2nd Plasma Technik Symposium, vol. 1, 363−373 (Pub.) Plasma Technik Wohlen, CH.

    Google Scholar 

  • Planche, M.P., A. Lakat, H. Liao, and C. Coddet. 2003. Investigations of in-flight particle characteristics through DPV measurements and correlation with impact analysis and coating properties. In Proceedings of ITSC-2003, Orlando, FL, ed. B. Marple and C. Moreau, 1175–1182. Materials Park, OH: ASM International.

    Google Scholar 

  • Planche, M.-P., H. Liao, and C. Coddet. 2004. Relationship between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surface and Coatings Technology 182 (2–3): 215–226.

    Article  CAS  Google Scholar 

  • Pokhmurskii, V., M. Student, V. Dovhuny, I. Sydorak, and H. Pokhmurska. 2002. Wear resistance arc-sprayed coating from power wires. In Proceedings of ITSC, Essen, 2002, ed. E. Lugscheider, 559–562. ASM Thermal Spray Society.

    Google Scholar 

  • Pourmousa, A., A. Abedini, J. Mostaghimi, and S. Chandra. 2004. Particle Diagnostics in Wire-Arc Spraying System. In Proceedings of the ITSC-2004, Osaka, Japan, ed. A. Ohmori, 962–967. Material Park, OH: ASM International.

    Google Scholar 

  • Pourmousa, A., J. Mostaghimi, A. Abedini, and S. Chandra. 2005. Particle size distribution in a wire-arc spraying system. Journal of Thermal Spray Technology 14 (4): 502–510.

    Article  CAS  Google Scholar 

  • Sakoda, N., M. Hida, Y. Takemoto, A. Sakakibara, and T. Tajiri. 2003. Influence of atomization gas on coating properties under Ti arc spraying. Materials Science and Engineering A342: 264–269.

    Article  CAS  Google Scholar 

  • Sampson, E.R. 1993. The economics of arc vs. plasma spray for aircraft components. In Proceedings of 5th. NTSC-1993, Anaheim, CA, ed. C.C. Berndt and T.F. Bernecki, 257–262. Material Park OH: ASM International.

    Google Scholar 

  • Sampson, E.R., and M.P. Zwetsloot. 1997. Arc spray process for the aircraft and stationary gas turbine industry. Journal of Thermal Spray Technology 6 (2): 150–152.

    Article  CAS  Google Scholar 

  • Schmidt, D.P., B.A. Shaw, E. Sikora, W.W. Shaw, and L.H. Laliberte. 2006. Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment. Progress in Organic Coating 57: 352–364.

    Article  CAS  Google Scholar 

  • Schoop M. U. 1915. Apparatus for spraying molten metal and other fusible substances. US Patent No. 1,133,507,

    Google Scholar 

  • Sharifahmadian, O., H.R. Salimijazi, M.H. Fathi, J. Mostaghimi, and L. Pershin. 2013a. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surface & Coatings Technology 233: 74–79.

    Article  CAS  Google Scholar 

  • ———. 2013b. Study of the antibacterial behavior of wire arc sprayed copper coatings. Journal of Thermal Spray Technology 22 (2-3): 371–379.

    Google Scholar 

  • Sheard, J., J.V.R. Heberlein, K. Stelson, and E. Pfender. 1997. Diagnostic development for control of wire-arc spraying. In Proceedings of 1st UTSC-1997, Indianapolis, Indiana, ed. C.C. Berndt, 613–618. Materials Park, OH: ASM International.

    Google Scholar 

  • Shukla, V.N., R. Jayaganthan, and V.K. Tewari. 2013. Degradation behavior of nanostructured coatings deposited by high-velocity arc spraying process in an actual environment of a coal-fired boiler. JOM 65 (6): 784–791.

    Article  CAS  Google Scholar 

  • Skoblo, T.S., V.M. Vlasovets, and V.V. Moroz. 2001. Structure and distribution of components in the working layers upon reconditioning of parts by electric-arc metallization. Metal Science and Heat Treatment 43 (11–12): 497–500.

    Article  CAS  Google Scholar 

  • Sørensen, P.A., S. Kiil, K. Dam-Johansen, and C.E. Weinell. 2009. Anticorrosive coatings: A review. Journal of Coatings Technology and Research 6 (2): 135–176.

    Article  CAS  Google Scholar 

  • Steffens, H.D. 1966. Metallurgical changes in the arc spraying of steel. British Welding Journal 13 (10): 597–605.

    CAS  Google Scholar 

  • Steffens, H.D., and K. Nassenstein. 1994. Recent developments in single-wire vacuum arc spraying. Journal of Thermal Spray Technology 3 (4): 412–417.

    Article  CAS  Google Scholar 

  • Steffens, H.-D., and K. Nassenstein. 1999. Influence of the spray velocity on arc-sprayed coating structures. Journal of Thermal Spray Technology 8 (3): 454–460.

    Article  CAS  Google Scholar 

  • Steffens, H.D., and M. Wewel. 1991. One wire vacuum arc spraying-A new modified process. In Proceedings of 4th NTSC-1991, Pittsburgh, Pennsylvania, ed. T.F. Bernecki, 395–398. Materials Park, OH: ASM International.

    Google Scholar 

  • Steffens, H.D., Z. Babiak, and M. Wewel. 1990. Recent developments in arc spraying. IEEE Transactions on Plasma Science 18 (6): 974–979.

    Article  CAS  Google Scholar 

  • Tian, H.L., S.C. Wei, Y.X. Chen, H. Tong, Y. Liu, and B.S. Xu. 2014. Microstructure and wear resistance of an arc-sprayed Fe-based coating after surface remelting treatment. Strength of Materials 46 (2): 229–234.

    Article  CAS  Google Scholar 

  • Tillmann, W., and M. Abdulgader. 2012. Particle size distribution of the filling powder in cored wires: Its effect on arc behavior, in-flight particle behavior, and splat formation. Journal of Thermal Spray Technology 21 (3–4): 706–718.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, and M. Abdulgader. 2008a. Asymmetric melting behavior in twin wire arc spraying with cored wires. Journal of Thermal Spray Technology 17 (5–6): 974–982.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, M. Abdulgader, M. Gurris, D. Kuzmin, and S. Turek. 2008b. Particle behavior during the arc spraying process with cord wires. Journal of Thermal Spray Technology 17 (5–6): 966–973.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, and M. Abdulgader. 2010. The correlation between the coating quality and the moving direction of the twin wire arc spraying gun. Journal of Thermal Spray Technology 19 (1–2): 409–421.

    Article  Google Scholar 

  • Tillmann, W., L. Hagen, and P. Schröder. 2017. Investigation on the tribological behavior of arc-sprayed and hammer-peened coatings using tungsten carbide cored wires. Journal of Thermal Spray Technology 26: 229–242.

    Article  CAS  Google Scholar 

  • Toma, S.L. 2013. The influence of jet gas temperature on the characteristics of steel coating obtained by wire arc spraying. Surface & Coatings Technology 220: 261–265.

    Article  CAS  Google Scholar 

  • Tucker R.C. Jr. (ed.). 2013. ASM handbook Vol. 5A Thermal Spray technology, (Pub.) ASM international, Materials Park, OH 44073-0002, USA.

    Google Scholar 

  • Varis, T., and E. Rajamake. 2002. Effect of the nozzle design and atomization gas on the properties of the electric arc sprayed Ni18Cr6A12Mn-coatings. In Proceedings of ITSC-2002, Essen, ed. E. Lugscheider, 550–552. Materials Park, OH: ASM Thermal Spray Society.

    Google Scholar 

  • Wang, X., J.V.R. Heberlein, E. Pfender, and W. Gerberich. 1995a. Enhancement of coating uniformity with secondary gas atomization in wire arc spray. In Proceedings of ISPC-12, Minneapolis, Minnesota, ed. J. Heberlein, D.W. Ernie, and J.T. Roberts, 907–913. Minneapolis: International Union of Pure and Applied Chemistry.

    Google Scholar 

  • ———. 1995b. Effect of shrouded CO2 gas atomization on coating properties in wire arc spray. In Proceedings of 8th NTSC Conference, Houston, Texas, 1995, ed. C.C. Berndt and S. Sampath, 31–37. Materials Park, OH: ASM International.

    Google Scholar 

  • ———. 1996. Effect of gas velocity and particle velocity on coating adhesion in wire arc spraying. In Proceedings of 9th NTSC, Cincinnati, OH, 1996, ed. C.C. Berndt, 807–811. Materials Park, OH: ASM International.

    Google Scholar 

  • ———. 1999. Effect of nozzle configuration, gas pressure and gas type on coating properties in wire arc spray. Journal of Thermal Spray Technolgoy 8 (4): 565–575.

    Article  Google Scholar 

  • Wang, R., D. Song, W. Liu, and X. He. 2010. Effect of arc spraying power on the microstucture and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites. Applied Surface Science 257: 203–209.

    Article  CAS  Google Scholar 

  • Watanabe, T., X. Wang, J.V.R. Heberlein, and E. Pfender. 1995. Fume generation mechanism in wire arc spraying. In Proceedings of ISPC-12, ed. J. Heberlein, D.W. Ernie, and J.T. Roberts, 889–894. Minneapolis: International Union of Pure and Applied Chemistry.

    Google Scholar 

  • Watanabe, T., X. Wang, J.V.R. Heberlein, E. Pfender, and W. Herwig. 1996. Voltage and current fluctuations in wire arc spraying as indications for coating properties. In Proceedings of 9th NTSC-1996, Cincinnati, OH, ed. C.C. Berndt, 577–583. Materials Park, OH: ASM International.

    Google Scholar 

  • Watanabe, T., T. Sato, and A. Nezu. 2002. Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallic compounds. Thin Solid Films 407: 98–103.

    Article  CAS  Google Scholar 

  • Wielage, B., H. Pokhmurska, M. Student, V. Gvozdeckii, T. Stupnyckyj, and V. Pokhmurskii. 2013. Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures. Surface & Coatings Technology 220: 27–35.

    Article  CAS  Google Scholar 

  • Wilden, J., J.P. Bergmann, S. Jahn, S. Knapp, F. van Rodijnen, and G. Fischer. 2007a. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties. In Proceedings of ITSC, Bei**g, People’s Republic of China, 2007, ed. B. Marple, M. Hyland, Y.C. Lau, C.J. Li, R.S. Lima, and G. Montavon, 759–767. Materials Park, OH: ASM International.

    Google Scholar 

  • ———. 2007b. Investigation about the chrome steel wire arc spray process and the resulting coating properties. Journal of Thermal Spray Technology 16 (5–6): 759–767.

    Article  Google Scholar 

  • Wu, B., L.-h. Fang, X.-l. Chen, Z.-q. Zou, X.-h. Yu, and G. Chen. 2014. Fabricating aluminum bronze rotating band for large-caliber projectiles by high velocity arc spraying. Journal of Thermal Spray Technology 23 (3): 447–455.

    Article  CAS  Google Scholar 

  • Yao, H.H., Z. Zhou, Y.M. Wang, D.Y. He, K. Bobzin, L. Zhao, M. Öte, and T. KÖnigstein. 2017. Microstructure and properties of FeCrB alloy coatings prepared by wire-arc spraying. Journal of Thermal Spray Technology 26: 483–491.

    Article  CAS  Google Scholar 

  • Zajchowski, P., and H.B. Crapo. 1999. Evaluation of three dual-wire electric arc-sprayed coatings: Industrial note. Journal of Thermal Spray Technology 5 (4): 457–462.

    Article  Google Scholar 

  • Zhang, Z.L., D.Y. Li, and S.Y. Wang. 2006. High temperature performance of arc-sprayed aluminum bronze coatings for steel. Transactions of Nonferrous Metals Society 16: 868–872.

    Article  CAS  Google Scholar 

  • **n, Zhang, **ran Lin ZehuaWang, and Zehua Zhou. 2015. A study on high temperature oxidation behavior of high-velocity arc sprayed Fe-based coatings. Surface & Coatings Technology 283: 255–261.

    Google Scholar 

  • Zhao, L., B. Fu, D. He, and P. Kutschmann. 2009. Development of a new wear resistant coating by arc spraying of a steel-based cored wire. Frontiers of Mechanical Engineering 4 (1): 1–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

Units are indicated in parentheses; when no units are indicated, the parameter is dimensionless.

1.1 Latin Alphabet

d :

Droplet/particle diameter (m)

d :

Liquid jet diameter (m)

I :

Arc current (A)

L :

Characteristic dimension for the liquid (m)

L s :

Characteristic length (m)

\( \dot{Q} \) :

Gas flow rate (m3/s)

R 0.5 :

Radius at which the droplet flux reached 50% of its maximum centerline value (m)

Re :

Reynolds number (Re = ρud/μ)

T :

Droplet temperature (K)

u :

Liquid velocity (m/s)

u r :

Relative velocity of the liquid to gas stream (m/s)

v :

Droplet velocity (m/s)

vs:

Substrate traverse velocity (m/s) or (m/min)

x, y, z :

Lateral, perpendicular, and axial coordinates (m)

We :

Weber number \( \left( We={u}_r^2{L}_{\ell }\ {\rho}_g/{\sigma}_{\ell}\right) \)

1.2 Greek Alphabet

ρg:

Density of gas (kg/m3)

κ :

Thermal conductivity (W/mK)

ρ :

Liquid density (kg/m3)

σ :

Surface tension (N/m) (kg/s2)

μ :

Dynamic viscosity of the liquid (kg/m.s)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boulos, M.I., Fauchais, P.L., Heberlein, J.V.R. (2021). Wire Arc Spraying. In: Thermal Spray Fundamentals. Springer, Cham. https://doi.org/10.1007/978-3-030-70672-2_11

Download citation

Publish with us

Policies and ethics

Navigation