Transmission, Scanning Transmission, and Scanning Electron Microscopy

  • Chapter
  • First Online:
Magnetic Measurement Techniques for Materials Characterization
  • 3194 Accesses

Abstract

The properties of magnetic materials are closely related to their microstructure and micromagnetic structures like magnetic domains and spin textures. Electron microscopy is a powerful technique to characterize such features at nanometer resolution. This chapter describes structural characterization and magnetic imaging techniques using (scanning) transmission electron microscopy, scanning electron microscopy, and related techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Zuo, J.C. Spence, Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience (Springer, New York, 2017)

    Book  Google Scholar 

  2. A. Tonomura, Electron-holographic interference microscopy. Adv. Phys. 41, 59–103 (1992)

    Article  Google Scholar 

  3. H. Hopster, H. P. Oepen (eds.), Magnetic Microscopy of Nanostructures (Springer-Verlag, Berlin Heidelberg, 2005)

    Google Scholar 

  4. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998)

    Article  CAS  Google Scholar 

  5. O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999)

    Article  CAS  Google Scholar 

  6. S. Nishikwa, S. Kikuchi, Diffraction of cathode rays by mica. Nature 121, 1019–1020 (1928)

    Article  Google Scholar 

  7. O. Scherzer, The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949)

    Article  CAS  Google Scholar 

  8. E.J. Kirkland, Advanced Computing in Electron Microscopy (Springer, New York, 2010)

    Book  Google Scholar 

  9. Y. Takahashi, T. Akashi, T. Shimakura, T. Tanigaki, T. Kawasaki, H. Shinada, N. Osakabe, Resolution assessment of an aberration corrected 1.2-MV field emission transmission electron microscope. Microsc. Microanal. 21(S3), 1865–1866 (2015)

    Article  Google Scholar 

  10. M.A. Schofield, M. Beleggia, Y. Zhu, G. Pozzi, Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging. Ultramicroscopy 108, 625–634 (2008)

    Article  CAS  Google Scholar 

  11. N. Shibata, Y. Kohno, A. Nakamura, et al., Atomic resolution electron microscopy in a magnetic field free environment. Nat. Commun. 10, 2308 (2019)

    Article  CAS  Google Scholar 

  12. T. Tanigaki, T. Akashi, A. Sugawara, et al., Magnetic field observations in CoFeB/Ta layers with 0.67-nm resolution by electron holography. Sci. Rep. 7, 16598 (2017)

    Article  Google Scholar 

  13. V.V. Volkov, Zhu, Y.M. De Graef, Micron 33, 411 (2002)

    Article  CAS  Google Scholar 

  14. M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Real-space observation of helical spin order. Science 311, 359–361 (2006)

    Article  CAS  Google Scholar 

  15. X.Z. Yu et al., Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010)

    Article  CAS  Google Scholar 

  16. A. Sugawara, T. Shimakura, H. Nishihara, T. Akashi, Y. Takahashi, N. Moriya, M. Sugaya, A 0.5-T pure-in-plane-field magnetizing holder for in-situ Lorentz microscopy. Ultramicroscopy 197, 105–111 (2019)

    Article  CAS  Google Scholar 

  17. T. Uhlig, J. Zweck, Direct observation of switching processes in Permalloy rings with Lorentz microscopy. Phys. Rev. Lett. 93, 047203 (2004)

    Article  CAS  Google Scholar 

  18. D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)

    Article  CAS  Google Scholar 

  19. G. Möllenstedt, H. Düker, Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z. Physik 145, 377–397 (1956)

    Article  Google Scholar 

  20. R.E. Dunin-Borkowski, A. Kovács, T. Kasama, M.R. McCartney, D.J. Smith, Electron holography, in Springer Handbook of Microscopy. Springer Handbooks, ed. by P. W. Hawkes, J. C. H. Spence, (Springer, Cham, 2019)

    Google Scholar 

  21. A. Sugawara, H. Kasai, A. Tonomura, P.D. Brown, R.P. Campion, K.W. Edmonds, B.L. Gallagher, J. Zemen, T. Jungwirth, Domain walls in the (Ga, Mn)As diluted magnetic semiconductor. Phys. Rev. Lett. 100, 047202 (2008)

    Article  Google Scholar 

  22. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986)

    Article  CAS  Google Scholar 

  23. C. Phatak, M. Beleggia, M. De Graef, Ultramicroscopy 108, 503–513 (2008)

    Article  CAS  Google Scholar 

  24. T. Tanigaki, Y. Takahashi, T. Shimakura, T. Akashi, R. Tsuneta, A. Sugawara, D. Shindo, Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs. Nano Lett. 15, 1309–1314 (2015)

    Article  CAS  Google Scholar 

  25. N. Erdman, D.C. Bell, R. Reichelt, Scanning electron microscopy, in Springer Handbook of Microscopy. Springer Handbooks, ed. by P. W. Hawkes, J. C. H. Spence, (Springer, Cham, 2019)

    Google Scholar 

  26. T.T. Sasaki, T. Ohkubo, K. Hono, Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets. Acta Mater. 115, 269–277 (2016)

    Article  CAS  Google Scholar 

  27. D. Schuller, D. Hohs, R. Loeffler, T. Bernthaler, D. Goll, G. Schneider, AIP Adv. 8, 047612 (2018)

    Article  Google Scholar 

  28. D.C. Joy, J.P. Jakubovics, Direct observation of magnetic domains by scanning electron microscopy. Philos. Mag. 17, 61–69 (1968)

    Article  CAS  Google Scholar 

  29. D.J. Fathers, J.P. Jakubovics, D.C. Joy, D.E. Newbury, H. Yakowitz, A new method of observing magnetic domains by scanning electron microscopy. Phys. Status Solidi A 20, 535–544 (1973)

    Article  Google Scholar 

  30. K. Koike, K. Hayakawa, Scanning electron microscope observation of magnetic domains using spin-polarized secondary electrons. Jpn. J. Appl. Phys. 23, L187–L188 (1984)

    Article  Google Scholar 

  31. F. Kloodt-Twesten, S. Kuhrau, H.P. Oepen, R. Frömter, Measuring the Dzyaloshinskii-Moriya interaction of the epitaxial co/Ir(111) interface. Phys. Rev. B 100, 100402(R) (2019)

    Article  Google Scholar 

  32. The Atomic Scale Electromagnetic Field Analysis Platform, https://www9.hitachi.co.jp/atomicscale_pf/en/. Accessed 30 March 2020

  33. P. Schattschneider, S. Rubino, C. Hébert, J. Rusz, J. Kunes, P. Novák, E. Carlino, M. Fabrizioli, G. Panaccione, G. Rossi, Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006)

    Article  CAS  Google Scholar 

  34. G.M. Caruso, F. Houdellier, S. Weber, M. Kociak, A. Arbouet, High brightness ultrafast transmission electron microscope based on a laser-driven cold-field emission source: Principle and applications. Adv. Phys.: X 4, 1 (2019)

    Google Scholar 

Download references

Acknowledgments

AS thanks Kanemura T and Shirai M for providing a high-resolution image obtained using Hitachi High-Tech, HF5000. AS also thanks Akashi T, Kasasi H, Takahashi Y, Tanigaki T, Yoshida T, Fukunaga K, Kohashi T, Harada K, Tonomura A, Osakabe N, Shinada H, Otsuka N, Venables JA, Nakamura Y, and Nittono O for helpful discussion and supervision. A special thanks is devoted to Scheinfein MR for providing me a research opportunity of magnetic microscopy in connection with micromagnetic simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sugawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugawara, A. (2021). Transmission, Scanning Transmission, and Scanning Electron Microscopy. In: Franco, V., Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-030-70443-8_11

Download citation

Publish with us

Policies and ethics

Navigation