Application of Back Propagation Algorithm in Optimization of Weave Friction Stir Welding—A Study

  • Chapter
  • First Online:
Futuristic Trends in Intelligent Manufacturing

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Modern engineering applications require the amalgamation of unlike materials for achieving specific thermal, electrical, and physical properties. Aluminium alloys are quite often employ fusion or solid-state processes to join with copper. However, fusion welding of dissimilar materials results in defects such as porosity and the formation of brittle particles. Friction Stir Welding (FSW) is energy efficient, environment friendly process used for joining dissimilar metals. Hence, an attempt is made to join aluminium alloy (AA6061-T6) and pure copper. In this article, the effect of tool pin offset, eccentric weave tool path, and the addition of graphene nano-platelets was studied and compared with the conventional FSW. The effect of pin offset compared to the conventional pin position helped in obtaining a good weld strength due to the large volume of material transportation of base materials and better stirring effect. The novel eccentric weave motion of the tool was useful for obtaining enhanced joint property due to higher holding time, adequate heat input, and uniform mixing during the joining process. A back propagation network (BPN) was utilized in arriving at the optimal process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ouyang, J. H., & Kovacevic, R. (2002). Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance, 11(1), 51–63.

    Article  Google Scholar 

  2. Ouyang, J., Yarrapareddy, E., & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172, 110–112.

    Article  Google Scholar 

  3. Liu, P., Shi, Q. Y., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminum 5A06 dissimilar materials. Materials Letters, 62, 4106–4108.

    Article  Google Scholar 

  4. Sinha, V. C., Kundu, S., & Chatterjee, S. (2016). Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding. Perspectives in Science, 8, 543–546.

    Article  Google Scholar 

  5. Muthu, M. F. X., & Jayabalan, V. (2016). Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al–Cu joints. Transactions of Nonferrous Metals Society of China, 26(4), 984–993.

    Article  Google Scholar 

  6. Mubiayi, M. P., & Akinlabi, E. T. (2017). Characterization of the intermetallic compounds in aluminium and copper friction stir spot welds. Materials Today: Proceedings, 4, 533–540.

    Google Scholar 

  7. Shi, H., Chen, K., Liang, Z., Dong, F., Yu, T., Dong, X., & Shan, A. (2017). Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. Journal of Materials Science and Technology, 33(4), 359–366.

    Article  Google Scholar 

  8. Zhang, W., Shen, Y., Yan, Y., & Guo, R. (2017). Dissimilar friction stir welding of 6061 Al to T2 pure Cu adopting tooth-shaped joint configuration: Microstructure and mechanical properties. Materials Science and Engineering A, 690, 355–364.

    Article  Google Scholar 

  9. Oliveira, J. P., Duarte, J. F., Inacio, P., Schell, N., Miranda, R. M., & Santos, T. G. (2017). Production of Al/NiTi composites by friction stir welding assisted by electrical current. Materials and Design, 113, 311–318.

    Article  Google Scholar 

  10. Khodabakhshi, F., Arab, S. M., Svec, P., & Gerlichd, A. P. (2017). Fabrication of a new Al-Mg/graphene nano composite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Materials Characterization, 132, 92–107.

    Article  Google Scholar 

  11. Lee, I. S., Hsu, C. J., Chen, C. F., Ho, N. J., & Kao, P. W. (2011). Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology, 71(5), 693–698.

    Article  Google Scholar 

  12. Wang, W., Shi, Q. Y., Liu, P., Li, H. K., & Li, T. (2009). A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of Materials Processing Technology, 209(4), 2099–3103.

    Article  Google Scholar 

  13. Cabibbo, M., Forcellese, A. M., Simoncini, M., Pieralisi, D., & Ciccarelli, . (2016). Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Materials & Design, 93, 146–159.

    Article  Google Scholar 

  14. Suresh, S., Venkatesan, K., Natarajan, E., & Rajesh, S. (2020). Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy. Silicon. https://doi.org/10.1007/s12633-020-00751-4.

  15. Suresh, S., Venkatesan, K., Natarajan, E., & Rajesh, S. (2020). Influence of tool rotational speed on the properties of friction stir spot welded AA7075-T6/Al2O3 composite joint. Paper Presented at the Materials Today: Proceedings, 27, 62–67. https://doi.org/10.1016/j.matpr.2019.08.220.

    Article  Google Scholar 

  16. Suresh, S., Venkatesan, K., & Natarajan, E. (2018). Influence of SiC nanoparticle reinforcement on FSS welded 6061-T6 aluminum alloy. Journal of Nanomaterials. doi:https://doi.org/10.1155/2018/7031867.

  17. Arun Kumar, S., Ramesh, S., Kedarvignesh, S. E., Aravind Arulchelvam, S., & Anjunath, M. S. (2019). Review of Friction stir processing of magnesium alloys. Materials Today: Proceedings, 16(2), 1320–1324.

    Google Scholar 

  18. Subramani, V., Jayavel, B., Sengottuvelu, R., & Lal Lazar, P. J. (2019). Assessment of microstructure and mechanical properties of stir zone seam of friction stir welded Magnesium AZ31B through Nano-SiC. Materials, 12, 1044; https://doi.org/10.3390/ma12071044.

  19. Bisadi, H., Tavakoli, A., Tour Sangsaraki, M., & Tour Sangsaraki, K. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials and Design, 43, 80–88.

    Article  Google Scholar 

  20. Chung, K., Lee, W., Kim, D., Kim, J., Chung, K. H., Kim, C., & Wagoner, R. H. (2010). Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part I—Material properties. International Journal of Solids and Structures, 47(7–8), 1048–1062.

    Article  MATH  Google Scholar 

  21. Pasini, A. (2015). Artificial neural networks for small dataset analysis. Journal of Thoracic Disease, 7, 953–960. https://doi.org/10.3978/j.issn.2072-1439.2015.04.61.

    Article  Google Scholar 

  22. Liu, Q., Ke, L., Liu, F., Huang, C., & **ng, L. (2013). Microstructure and mechanical property of multi-walled carbon nano tubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials and Design, 45, 343–348.

    Article  Google Scholar 

  23. Fonda, R. W., & Bingert, J. F. (2006). Precipitation and grain refinement in a 2195 Al friction stir weld. Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science, 37(12), 3593–3604.

    Article  Google Scholar 

  24. Fotoohi, Y., Rasaee, S., Bisadi, H., & Zahedi, M. (2014). Effect of friction stir welding parameters on the mechanical properties and microstructure of the dissimilar Al5083-copper butt joint. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228(4), 334–340.

    Article  Google Scholar 

  25. Ko, Y.-j, Lee, K.-J., & Baik, K.-h. (2017). Effect of tool rotational speed on mechanical properties and microstructure of friction stir welding joints within Ti–6Al–4V alloy sheets. Advances in Mechanical Engineering, 9(8), 1–7.

    Article  Google Scholar 

  26. Xue, P., **ao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering a, 527(21–22), 5723–5727.

    Article  Google Scholar 

  27. Mehta, K. P., & Badheka, V. J. (2015). A review on dissimilar friction stir welding of copper to aluminum: Process. Properties, and Variants, Materials and Manufacturing Processes, 31(3), 233–254.

    Google Scholar 

  28. Al-Jarrah, J. A. (2014). Surface morphology and mechanical properties of aluminum-copper joints welded by friction stir welding. Contemporary Engineering Sciences, 7(5), 219–230.

    Article  Google Scholar 

  29. Bhattacharya, T., Das, H., Jana, S., & Pal, T. (2017). Numerical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint. The International Journal of Advanced Manufacturing Technology, 88, 847–861.

    Article  Google Scholar 

  30. Lee, W. B., Yeon, Y. M., & Jung, S. B. (2004). Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding. Materials Transactions, 45(5), 1700–1705.

    Article  Google Scholar 

  31. Benavides, S., Li, Y., Murr, L. E., Brown, D., & McClure, J. C. (1999). Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia, 41(8), 809–815.

    Article  Google Scholar 

  32. Shanmuga Sundaram, N., & Murugan, N. (2010). Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials and Design, 31(9), 4184–4193.

    Article  Google Scholar 

  33. Galvao, I., Leal, R. M., Loureiro, A., & Rodrigues, D. M. (2010). Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Science and Technology of Welding and Joining, 15(8), 654–660.

    Article  Google Scholar 

  34. Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials and Design, 51, 466–473.

    Article  Google Scholar 

  35. Singarapu, U., Adepu, K., & Arumalle, S. R. (2015). Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. Journal of Magnesium and Alloys, 3(4), 335–344.

    Article  Google Scholar 

  36. Shen, J. J., Liu, H. J., & Cui, F. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials and Design, 31(8), 3937–3942.

    Article  Google Scholar 

  37. Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints. Journal of Materials Processing Technology, 217, 105–113.

    Article  Google Scholar 

  38. Al-Roubaiy, A. O., Nabat, S. M., & Batako, A. D. L. (2014). Experimental and theoretical analysis of friction stir welding of Al–Cu joints. the International Journal of Advanced Manufacturing Technology, 71(9–12), 1631–1642.

    Article  Google Scholar 

  39. Akbari, M., Abdi Behnagh, R., & Dadvand, A. (2012). Effect of materials position on friction stir lap welding of Al to Cu. Science and Technology of Welding and Joining, 17(7), 581–588.

    Article  Google Scholar 

  40. Akbari, M., & Behnagh, R. A. (2012). Dissimilar friction-stir lap joining of 5083 aluminum alloy to CuZn34 brass. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 43(5), 1177–1186.

    Article  Google Scholar 

  41. Beygi, R., Kazeminexhad, M., & Kokabi, A. H. (2012). Butt joining of Al–Cu bilayer sheet through friction stir welding. Transactions of Nonferrous Metals Society of China, 22(12), 2925–2929.

    Article  Google Scholar 

  42. Xue, P., Ni, D. R., Wang, D., **ao, B. L., & Ma, Z. Y. (2011). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science and Engineering A, 528(13–14), 4683–4689.

    Article  Google Scholar 

  43. Ozdemir, N., Buyükarslan, S., & Sarsylmaz, F. (2007). Effect of tool profile, rotational Speed and welding speed on the mechanical behaviour of friction stir welded AA1030 aluminium alloy. Science and Eng Journal of Firat University, 19(4), 575–582.

    Google Scholar 

  44. Pande, S. V., & Badheka, V. J. (2014). Effect of tool pin offset on mechanical and metallurgical properties of dissimilar FSW joints of 6061t6 AL alloy to copper material. Indian Welding Journal, 47, 1–7.

    Article  Google Scholar 

  45. Balasubramanian, M., & Jayabalakrishnan, D. (2019). Friction stir weave welding (FSWW) of AA6061 aluminium alloy with a novel tool path pattern. Australian Journal of Mechanical Engineering, 17(2), 133–144.

    Article  Google Scholar 

  46. London, B. M., Mahoney, W., Bingel, M., Calabrese, R. H., Bossi, D. W. Jata, K. V., Mahoney, M. W., ishra, R. S. Semiatin, S. L. & Lienert, T. (Eds.). (2003). Friction Stir Welding and Processing (p. 3). TMS: II.

    Google Scholar 

  47. Balasubramanian, M., & Jayabalakrishnan, S. (2018). Eccentric-weave Friction Stir Welding between Cu and AA 6061–T6 with reinforced Graphene nanoparticles. Materials and Manufacturing Processes, 33(3), 333–342.

    Article  Google Scholar 

  48. Elangovan, K., & Balasubramanian, V. (2008). Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 200(1–3), 163–175.

    Article  Google Scholar 

  49. Essa, A. R. S., Ahmed, M. M. Z., Mohamed, A. K. Y. A., & El-Nikhaily, A. E. (2016). An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. Journal of Materials Research and Technology, 5(3), 234–240.

    Article  Google Scholar 

  50. Suresh, S., Venkatesan, K., & Natarajan, E. (2018). Influence of SiC nanoparticle reinforcement on FSS welded 6061–T6 aluminum alloy. Journal of Nanomaterials, 2018,. https://doi.org/10.1155/2018/7031867.

  51. Cho, H. H., Han, H. N., Hong, S. T., Park, J. H., Kwon, Y. J., Kim, S. H., & Steel, R. J. (2010). Microstructural analysis of friction stir welded ferritic stainless steel. Materials Science and Engineering A, 528(6), 2889–2894.

    Article  Google Scholar 

  52. Nieto, A., Bisht, A., Lahiri, D., Zhang, C., & Agarwal, A. (2017). Graphene reinforced metal and ceramic matrix composites: A review. International Materials Reviews, 62(5), 241–302.

    Article  Google Scholar 

  53. Nourani, M., Abbas, S., Milani, S., & Yannacopoulos, T. (2011). Optimization of process parameters in friction stir welding of 6061 aluminum alloy. A Review and Case Study, Engineering, 3, 144–155.

    Google Scholar 

  54. Sahu, P. K., & Pal, S. (2017). Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. Journal of Materials Processing Technology, 243, 442–455.

    Article  Google Scholar 

  55. Saeid, T., Abdollah-zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1–2), 652–655.

    Article  Google Scholar 

  56. Savolainen, K. (2012). Friction stir welding of copper and microstructure and properties of the welds’, Ph.D. thesis. Aalto university.

    Google Scholar 

  57. Sevvel, P., & Jaiganesh, V. (2017). Effects of axial force on the mechanical properties of AZ80A Mg alloy during friction stir welding. Materials Today: Proceedings, 4, 1312–1320.

    Google Scholar 

  58. Zhang, D., Suzuki, M., & Maruyama, K. (2005). Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding. Scripta Materialia, 52(9), 899–903.

    Article  Google Scholar 

  59. He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66.

    Article  Google Scholar 

  60. Akinlabi, E. T. (2012). Effect of shoulder size on weld properties of dissimilar metal friction stir welds. Journal of Materials Engineering and Performance, 21(7), 1514–1519.

    Article  Google Scholar 

  61. Zhang, Z, & Chen, D. L. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nano composites. Materials Science and Engineering A, 483–484(1–2 C), 148–152.

    Google Scholar 

  62. Balasubramanian, M., & Jayabalakrishnan, D. (2020). Influence of pin offset and weave pattern on the performance of Al–Cu joints reinforced with graphene particles. International Journal of Automotive and Mechanical Engineering, 17(3), 8186–8196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramanian, M., Jayabalakrishnan, D., Hemadri, C., Ashwin, B. (2021). Application of Back Propagation Algorithm in Optimization of Weave Friction Stir Welding—A Study. In: Palanikumar, K., Natarajan, E., Sengottuvelu, R., Davim, J.P. (eds) Futuristic Trends in Intelligent Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-70009-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70009-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70008-9

  • Online ISBN: 978-3-030-70009-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation