SMEC: Sensor Mobile Edge Computing

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

The development of mobile user equipment progresses cooperatively with the advancement of the latest mobile applications. Still, the limited battery capacity prevents users from running computationally intensive applications on their gadgets. This one stimulated the evolution of Mobile cloud computing (MCC). Instead of its ample data storage and processing capability, MCC suffers from high latency. To deal with the latency problem a novel promising concept known as mobile edge computing has been introduced. Mobile edge computing (MEC) and wireless sensor networks (WSN) are two ever-promising research domains of the wireless network. The integration of MEC with WSN has given birth to Sensor Mobile Edge Computing (SMEC). However, sensor mobile edge computing is an emerging field, and energy-efficiency is one of the major challenges of this field. In MEC, services are provided at the edge of the mobile network for reducing the latency that in turn can improve the quality of user experience. Previously MEC focused on the use of base stations for offloading computations from mobile devices. However, after the arrival of fog computing, the definition of edge devices becomes broader. SMEC is a fusion of mobile edge computing and wireless sensor network. SMEC is an architecture where the sensor nodes capture the status of environmental objects and the collected data are sent to the cloud through the edge devices which participate in data processing also. This chapter discusses sensor mobile edge computing, its architecture, and its applications. The future scopes and challenges of SMEC are also addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, C., Shu, L., Hara, T., Wang, L., Nishio, S., and Yang, L.T., 2014. A survey on communication and data management issues in mobile sensor networks. Wireless Communications and Mobile Computing, 14(1), pp. 19–36.

    Article  Google Scholar 

  2. Gill, S.S., Garraghan, P., Stankovski, V., Casale, G., Thulasiram, R.K., Ghosh, S.K., Ramamohanarao, K. and Buyya, R., 2019. Holistic resource management for sustainable and reliable cloud computing: An innovative solution to global challenge. Journal of Systems and Software.

    Google Scholar 

  3. Gill, S.S. and Buyya, R., 2019. Sustainable Cloud Computing Realization for Different Applications: A Manifesto. In Digital Business (pp. 95–117). Springer, Cham.

    Chapter  Google Scholar 

  4. Ferrer, A.J., Marquès, J.M. and Jorba, J., 2019. Towards the decentralised cloud: Survey on approaches and challenges for mobile, ad hoc, and edge computing. ACM Computing Surveys (CSUR), 51(6), pp. 1-36.

    Article  Google Scholar 

  5. Mao, Y., You, C., Zhang, J., Huang, K. and Letaief, K.B., 2017. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), pp. 2322–2358.

    Article  Google Scholar 

  6. Mach, P. and Becvar, Z., 2017. Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), pp. 1628–1656.

    Article  Google Scholar 

  7. Peng, K., Leung, V., Xu, X., Zheng, L., Wang, J. and Huang, Q., 2018. A survey on mobile edge computing: Focusing on service adoption and provision. Wireless Communications and Mobile Computing, 2018.

    Google Scholar 

  8. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S. and Neal, A., 2014. Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative, pp. 1089–7801.

    Google Scholar 

  9. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I. and Ahmed, A., 2019. Edge computing: A survey. Future Generation Computer Systems, 97, pp. 219–235.

    Article  Google Scholar 

  10. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X. and Chen, X., 2020. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials.

    Google Scholar 

  11. Pham, Q.V., Fang, F., Ha, V.N., Piran, M.J., Le, M., Le, L.B., Hwang, W.J. and Ding, Z., 2020. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, pp. 116974–117017.

    Article  Google Scholar 

  12. Zhu, C., Wang, H., Liu, X., Shu, L., Yang, L.T. and Leung, V.C., 2014. A novel sensory data processing framework to integrate sensor networks with mobile cloud. IEEE Systems Journal, 10(3), pp. 1125–1136.

    Article  Google Scholar 

  13. De, D., Mukherjee, A., Ray, A., Roy, D.G. and Mukherjee, S., 2016. Architecture of green sensor mobile cloud computing. IET Wireless Sensor Systems, 6(4), pp. 109–120.

    Article  Google Scholar 

  14. Wang, W., Lee, K. and Murray, D., 2012, September. Integrating sensors with the cloud using dynamic proxies. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC) (pp. 1466–1471). IEEE.

    Google Scholar 

  15. Lounis, A., Hadjidj, A., Bouabdallah, A. and Challal, Y., 2016. Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Future Generation Computer Systems, 55, pp. 266–277.

    Article  Google Scholar 

  16. Malik, A. and Om, H., 2018. Cloud computing and internet of things integration: Architecture, applications, issues, and challenges. In Sustainable cloud and energy services (pp. 1–24). Springer, Cham.

    Google Scholar 

  17. Dattatraya, P.Y., Agarkhed, J. and Patil, S., 2016, March. Cloud assisted performance enhancement of smart applications in Wireless Sensor Networks. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 347–351). IEEE.

    Chapter  Google Scholar 

  18. Lee, I. and Lee, K., 2015. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), pp. 431–440.

    Article  Google Scholar 

  19. Lazarescu, M.T., 2013. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on emerging and selected topics in circuits and systems, 3(1), pp. 45–54.

    Article  Google Scholar 

  20. Zhao, Z., Min, G., Gao, W., Wu, Y., Duan, H. and Ni, Q., 2018. Deploying edge computing nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal, 5(5), pp. 3606–3614.

    Article  Google Scholar 

  21. Corcoran, P. and Datta, S.K., 2016. Mobile-edge computing and the Internet of Things for consumers: Extending cloud computing and services to the edge of the network. IEEE Consumer Electronics Magazine, 5(4), pp. 73–74.

    Article  Google Scholar 

  22. Alam, S., De, D. and Ray, A., 2015, May. Analysis of energy consumption for IARP, RIP and STAR routing protocols in wireless sensor networks. In 2015 Second International Conference on Advances in Computing and Communication Engineering (pp. 11–16). IEEE.

    Chapter  Google Scholar 

  23. Ray, A. and De, D., 2014. Level wise initial energy assignment in wireless sensor network for better network lifetime. In Advanced Computing, Networking and Informatics-Volume 2 (pp. 67–74). Springer, Cham.

    Chapter  Google Scholar 

  24. Ray, A. and De, D., 2012. P-eechs: Parametric energy efficient cluster head selection protocol for wireless sensor network. International Journal of Advanced Computer Engineering & Architecture, 2(2).

    Google Scholar 

  25. Ray, A. and De, D., 2013. Energy efficient clustering algorithm for multi-hop green wireless sensor network using gateway node. Advanced Science, Engineering and Medicine, 5(11), pp. 1199–1204

    Article  Google Scholar 

  26. Hamidouche, R., Aliouat, Z., Gueroui, A.M., Ari, A.A.A. and Louail, L., 2018. Classical and bio-inspired mobility in sensor networks for IoT applications. Journal of Network and Computer Applications, 121, pp. 70–88.

    Article  Google Scholar 

  27. Maksimovic, M., 2017. The role of green internet of things (G-IoT) and big data in making cities smarter, safer and more sustainable. International Journal of Computing and Digital Systems, 6(04), pp. 175–184.

    Article  Google Scholar 

  28. Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V. and Venkatasubramanian, N., 2014. Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), pp. 133–143.

    Article  Google Scholar 

  29. Mohanty, S.P., Choppali, U. and Kougianos, E., 2016. Everything you wanted to know about smart cities: The internet of things is the backbone. IEEE Consumer Electronics Magazine, 5(3), pp. 60–70.

    Article  Google Scholar 

  30. Yamagata, Y., Yang, P.P., Chang, S., Tobey, M.B., Binder, R.B., Fourie, P.J., Jittrapirom, P., Kobashi, T., Yoshida, T. and Aleksejeva, J., 2020. Urban systems and the role of big data. In Urban Systems Design (pp. 23–58). Elsevier.

    Chapter  Google Scholar 

  31. Trinta, F., Rego, P.A., Gomes, F., Rocha, L., Viana, W. and de Souza, J.N., 2020. Using Mobile Cloud Computing for Develo** Context-Aware Multimedia Applications. In Special Topics in Multimedia, IoT and Web Technologies (pp. 51–89). Springer, Cham.

    Google Scholar 

  32. Yu, J., Li, H. and Liu, D., 2020. Modified Immune Evolutionary Algorithm for Medical Data Clustering and Feature Extraction under Cloud Computing Environment. Journal of Healthcare Engineering, 2020.

    Google Scholar 

  33. Hua, J., Shi, G., Zhu, H., Wang, F., Liu, X. and Li, H., 2020. CAMPS: Efficient and privacy-preserving medical primary diagnosis over outsourced cloud. Information Sciences, 527, pp. 560–575.

    Article  Google Scholar 

  34. Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman, P.P., Gao, L., **ang, Y. and Ranjan, R., 2018. Fog Computing: Survey of trends, architectures, requirements, and research directions. IEEE access, 6, pp. 47980–48009.

    Article  Google Scholar 

  35. Avasalcai, C., Murturi, I. and Dustdar, S., 2020. Edge and fog: A survey, use cases, and future challenges. Fog Computing: Theory and Practice, pp. 43–65.

    Google Scholar 

  36. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S. and Buyya, R., 2020. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 104, pp. 187–200.

    Article  Google Scholar 

  37. Gia, T.N., Queralta, J.P. and Westerlund, T., 2020. Exploiting LoRa, edge, and fog computing for traffic monitoring in smart cities. In LPWAN Technologies for IoT and M2M Applications (pp. 347–371). Academic Press.

    Google Scholar 

  38. Javadzadeh, G. and Rahmani, A.M., 2020. Fog computing applications in smart cities: A systematic survey. Wireless Networks, 26(2), pp. 1433–1457.

    Article  Google Scholar 

  39. Giang, N.K., Lea, R. and Leung, V.C., 2020. Develo** applications in large scale, dynamic fog computing: A case study. Software: Practice and Experience, 50(5), pp. 519–532.

    Google Scholar 

  40. Rehan, M.M. and Rehmani, M., 2020. Blockchain-enabled Fog and Edge Computing: Concepts, Architectures and Applications: Concepts, Architectures and Applications.

    Google Scholar 

  41. Hernandez-Nieves, E., Hernández, G., Gil-González, A.B., Rodríguez-González, S. and Corchado, J.M., 2020. Fog computing architecture for personalized recommendation of banking products. Expert Systems with Applications, 140, p. 112900.

    Article  Google Scholar 

  42. Shen, X., Zhu, L., Xu, C., Sharif, K. and Lu, R., 2020. A privacy-preserving data aggregation scheme for dynamic groups in fog computing. Information Sciences, 514, pp. 118–130.

    Article  Google Scholar 

  43. Kumar, K.V.R., Kumar, K.D., Poluru, R.K., Basha, S.M. and Reddy, M.P.K., 2020. Internet of Things and Fog Computing Applications in Intelligent Transportation Systems. In Architecture and Security Issues in Fog Computing Applications (pp. 131–150). IGI Global.

    Chapter  Google Scholar 

  44. Sarkar, S. and Misra, S., 2016. Theoretical modelling of fog computing: a green computing paradigm to support IoT applications. Iet Networks, 5(2), pp. 23–29.

    Article  Google Scholar 

  45. Zhang, K., Leng, S., He, Y., Maharjan, S. and Zhang, Y., 2018. Mobile edge computing and networking for green and low-latency Internet of Things. IEEE Communications Magazine, 56(5), pp. 39–45.

    Article  Google Scholar 

  46. **, X., Zhang, F., Vasilakos, A.V. and Liu, Z., 2016. Green data centers: A survey, perspectives, and future directions. ar**v preprint ar**v:1608.00687.

    Google Scholar 

  47. Sun, X. and Ansari, N., 2017. Green cloudlet network: A distributed green mobile cloud network. IEEE Network, 31(1), pp. 64–70.

    Article  Google Scholar 

  48. Malla, S. and Christensen, K., 2020. The effect of server energy proportionality on data center power oversubscription. Future Generation Computer Systems, 104, pp. 119–130.

    Article  Google Scholar 

  49. Lin, M., Wierman, A., Andrew, L.L. and Thereska, E., 2012. Dynamic right-sizing for power-proportional data centers. IEEE/ACM Transactions on Networking, 21(5), pp. 1378–1391.

    Article  Google Scholar 

  50. Lin, M., Liu, Z., Wierman, A. and Andrew, L.L., 2012, June. Online algorithms for geographical load balancing. In 2012 international green computing conference (IGCC) (pp. 1–10). IEEE.

    Google Scholar 

  51. Xu, H., Feng, C. and Li, B., 2014. Temperature aware workload managementin geo-distributed data centers. IEEE Transactions on Parallel and Distributed Systems, 26(6), pp. 1743–1753.

    Article  Google Scholar 

  52. Toosi, A.N., Qu, C., de Assunção, M.D. and Buyya, R., 2017. Renewable-aware geographical load balancing of web applications for sustainable data centers. Journal of Network and Computer Applications, 83, pp. 155–168.

    Article  Google Scholar 

  53. Gong, J., Zhou, S. and Niu, Z., 2013. Optimal power allocation for energy harvesting and power grid coexisting wireless communication systems. IEEE Transactions on Communications, 61(7), pp. 3040–3049.

    Article  Google Scholar 

  54. Mao, Y., Zhang, J. and Letaief, K.B., 2016. Grid energy consumption and QoS tradeoff in hybrid energy supply wireless networks. IEEE Transactions on Wireless Communications, 15(5), pp. 3573–3586.

    Article  Google Scholar 

  55. Huang, K. and Lau, V.K., 2014. Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), pp. 902–912.

    Article  Google Scholar 

  56. Ju, H. and Zhang, R., 2013. Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), pp. 418–428.

    Google Scholar 

  57. Al-Shuwaili, A. and Simeone, O., 2017. Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wireless Communications Letters, 6(3), pp. 398–401.

    Article  Google Scholar 

  58. Schneider, M., Rambach, J. and Stricker, D., 2017, March. Augmented reality based on edge computing using the example of remote live support. In 2017 IEEE International Conference on Industrial Technology (ICIT) (pp. 1277–1282). IEEE.

    Chapter  Google Scholar 

  59. Anjum, A., Abdullah, T., Tariq, M., Baltaci, Y. and Antonopoulos, N., 2016. Video stream analysis in clouds: An object detection and classification framework for high performance video analytics. IEEE Transactions on Cloud Computing.

    Google Scholar 

  60. Zhang, K., Mao, Y., Leng, S., He, Y. and Zhang, Y., 2017. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 12(2), pp. 36–44.

    Article  Google Scholar 

  61. Kabir, M.T. and Masouros, C., 2019. A Scalable Energy vs. Latency Trade-Off in Full-Duplex Mobile Edge Computing Systems. IEEE Transactions on Communications, 67(8), pp. 5848–5861.

    Article  Google Scholar 

  62. Dinh, T.Q., La, Q.D., Quek, T.Q. and Shin, H., 2018. Learning for computation offloading in mobile edge computing. IEEE Transactions on Communications, 66(12), pp. 6353–6367.

    Article  Google Scholar 

  63. Ji, L. and Guo, S., 2018. Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet of Things Journal, 6(3), pp. 4744–4754.

    Article  Google Scholar 

  64. Huang, L., Bi, S. and Zhang, Y.J., 2019. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Transactions on Mobile Computing.

    Google Scholar 

  65. Sun, Y., Zhou, S. and Xu, J., 2017. EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE Journal on Selected Areas in Communications, 35(11), pp. 2637–2646.

    Article  Google Scholar 

  66. Sun, X. and Ansari, N., 2016. EdgeIoT: Mobile edge computing for the Internet of Things. IEEE Communications Magazine, 54(12), pp. 22–29.

    Article  Google Scholar 

  67. Jiang, C., Cheng, X., Gao, H., Zhou, X. and Wan, J., 2019. Toward computation offloading in edge computing: A survey. IEEE Access, 7, pp. 131543–131558.

    Article  Google Scholar 

  68. Abbas, N., Zhang, Y., Taherkordi, A. and Skeie, T., 2017. Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), pp. 450–465.

    Article  Google Scholar 

  69. Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., De Foy, X. and Zhang, Y., 2017. Mobile edge cloud system: Architectures, challenges, and approaches. IEEE Systems Journal, 12(3), pp. 2495–2508.

    Article  Google Scholar 

  70. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. and Sabella, D., 2017. On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3), pp. 1657–1681.

    Article  Google Scholar 

  71. Moura, J. and Hutchison, D., 2018. Game theory for multi-access edge computing: Survey, use cases, and future trends. IEEE Communications Surveys & Tutorials, 21(1), pp. 260–288.

    Article  Google Scholar 

  72. Ai, Y., Peng, M. and Zhang, K., 2018. Edge computing technologies for Internet of Things: a primer. Digital Communications and Networks, 4(2), pp. 77–86.

    Article  Google Scholar 

  73. Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M. and Taleb, T., 2018. Survey on multi-access edge computing for internet of things realization. IEEE Communications Surveys & Tutorials, 20(4), pp. 2961–2991.

    Article  Google Scholar 

  74. Premsankar, G., Di Francesco, M. and Taleb, T., 2018. Edge computing for the Internet of Things: A case study. IEEE Internet of Things Journal, 5(2), pp. 1275–1284.

    Article  Google Scholar 

  75. Mäkitalo, N., Ometov, A., Kannisto, J., Andreev, S., Koucheryavy, Y. and Mikkonen, T., 2018. Safe and secure execution at the network edge: a framework for coordinating cloud, fog, and edge. IEEE Softw, 35(1), pp. 30–37.

    Article  Google Scholar 

  76. Shirazi, S.N., Gouglidis, A., Farshad, A. and Hutchison, D., 2017. The extended cloud: Review and analysis of mobile edge computing and fog from a security and resilience perspective. IEEE Journal on Selected Areas in Communications, 35(11), pp. 2586–2595.

    Article  Google Scholar 

  77. Beck, M.T., Werner, M., Feld, S. and Schimper, S., 2014, November. Mobile edge computing: A taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet (pp. 48–55). Citeseer.

    Google Scholar 

  78. Mukherjee, A., De, D., and Guha Roy D, 2016. A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing, 7(1), pp. 141–154.

    Article  Google Scholar 

  79. Garg, S., Singh, A., Kaur, K., Aujla, G. S., Batra, S., Kumar, N., &Obaidat, M. S. (2019). Edge computing-based security framework for big data analytics in VANETs. IEEE Network, 33(2), 72–81.

    Article  Google Scholar 

  80. Huang, C. M., Chiang, M. S., Dao, D. T., Su, W. L., Xu, S., & Zhou, H. (2018). V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture. IEEE Access, 6, 17741–17755.

    Article  Google Scholar 

  81. Van Krevelen, D. W. F., &Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1–20.

    Article  Google Scholar 

  82. Chen, D., **e, L.J., Kim, B., Wang, L., Hong, C.S., Wang, L.C. and Han, Z., 2020, February. Federated Learning Based Mobile Edge Computing for Augmented Reality Applications. In 2020 International Conference on Computing, Networking and Communications (ICNC) (pp. 767–773). IEEE.

    Chapter  Google Scholar 

  83. Deb, P., Mukherjee, A., & De, D. (2019). Design of Green Smart Room Using Fifth Generation Network Device Femtolet. Wireless Personal Communications, 104(3), 1037–1064.

    Article  Google Scholar 

  84. Ray, A. and De, D., 2017. Performance evaluation of tree based data aggregation for real time indoor environment monitoring using wireless sensor network. Microsystem Technologies, 23(9), pp. 4307–4318.

    Article  Google Scholar 

  85. Maswadi, K., Ghani, N.B.A. and Hamid, S.B., 2020. Systematic Literature Review of Smart Home Monitoring Technologies Based on IoT for the Elderly. IEEE Access, 8, pp. 92244–92261.

    Article  Google Scholar 

  86. Ghosh, S., Mukherjee, A., Ghosh, S. K., &Buyya, R. (2019). Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Transactions on Network Science and Engineering.

    Google Scholar 

  87. Greco, L., Percannella, G., Ritrovato, P., Tortorella, F. and Vento, M., 2020. Trends in IoT based solutions for health care: moving AI to the Edge. Pattern Recognition Letters.

    Google Scholar 

  88. Tamilselvi, V., Sribalaji, S., Vigneshwaran, P., Vinu, P. and GeethaRamani, J., 2020, March. IoT based health monitoring system. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 386–389). IEEE.

    Chapter  Google Scholar 

  89. Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S. and Mustaqim, M., 2020. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, pp. 23022–23040.

    Article  Google Scholar 

  90. Sun, Y.; Dong, W.; Chen, Y. An improved routing algorithm based on ant colony optimization in wireless sensor networks. IEEE Commun. Lett. 2017, 21, 1317–1320.

    Article  Google Scholar 

  91. Cui, Z., Cao, Y., Cai, X., Cai, J. and Chen, J. (2018) Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. Journal of Parallel and Distributed Computing.

    Google Scholar 

  92. Chandirasekaran, D. and Jayabarathi, T., 2019. Cat swarm algorithm in wireless sensor networks for optimized cluster head selection: a real time approach. Cluster Computing, 22(5), pp. 11351–11361.

    Article  Google Scholar 

  93. Aziz, A., Singh, K., Osamy, W. and Khedr, A.M., 2019. Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, pp. 12–28.

    Article  Google Scholar 

  94. Ray, A. and De, D., 2016. An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network. Simulation Modelling Practice and Theory, 62, pp. 117–136.

    Article  Google Scholar 

  95. Mittal, N., 2019. Moth Flame Optimization Based Energy Efficient Stable Clustered Routing Approach for Wireless Sensor Networks. Wireless Personal Communications, 104(2), pp. 677–694.

    Article  Google Scholar 

  96. Tabibi, S. and Ghaffari, A., 2019. Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), pp. 199–216.

    Article  Google Scholar 

  97. Li, Y., Soleimani, H. and Zohal, M., 2019. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner Production.

    Google Scholar 

  98. Wang, J., Cao, J., Sherratt, R.S. and Park, J.H., 2018. An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74(12), pp. 6633–6645.

    Article  Google Scholar 

  99. Osaba, E., Yang, X.S., Fister Jr, I., Del Ser, J., Lopez-Garcia, P. and Vazquez-Pardavila, A.J., (2019) A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm and evolutionary computation, 44:273–286.

    Article  Google Scholar 

  100. Ng, C.K., Wu, C.H., Ip, W.H. and Yung, K.L. (2018) A smart bat algorithm for wireless sensor network deployment in 3-D environment. IEEE Communications Letters, 22(10):2120–2123.

    Article  Google Scholar 

  101. Kong, L., Chen, C.M., Shih, H.C., Lin, C.W., He, B.Z. and Pan, J.S., 2014. An energy-aware routing protocol using cat swarm optimization for wireless sensor networks. In Advanced Technologies, Embedded and Multimedia for Human-Centric Computing (pp. 311–318). Springer, Dordrecht.

    Chapter  Google Scholar 

  102. Kong, L., Pan, J.S., Tsai, P.W., Vaclav, S. and Ho, J.H., 2015. A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for wireless sensor network. International Journal of Distributed Sensor Networks, 11(3), p. 729680.

    Article  Google Scholar 

  103. Li, X., Keegan, B. and Mtenzi, F., 2018. Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs. Sensors, 18(10), p. 3351.

    Article  Google Scholar 

  104. Khan, M.F., Aadil, F., Maqsood, M., Bukhari, S.H.R., Hussain, M. and Nam, Y., 2019. Moth Flame Clustering Algorithm for Internet of Vehicle (MFCA-IoV). IEEE Access, 7, pp. 11613–11629.

    Article  Google Scholar 

  105. Ray, A. and De, D., 2016. Energy efficient clustering protocol based on K-means (EECPK-means)-midpoint algorithm for enhanced network lifetime in wireless sensor network. IET Wireless Sensor Systems, 6(6), pp. 181–191.

    Article  Google Scholar 

  106. Raychaudhuri, A. and De, D., 2020. Bio-inspired Algorithm for Multi-objective Optimization in Wireless Sensor Network. In Nature Inspired Computing for Wireless Sensor Networks (pp. 279–301). Springer, Singapore.

    Chapter  Google Scholar 

  107. Hamrioui, S. and Lorenz, P., 2017. Bio inspired routing algorithm and efficient communications within IoT. IEEE Network, 31(5), pp. 74–79.

    Article  Google Scholar 

  108. He, Y., Yu, F. R., Zhao, N., Leung, V. C., & Yin, H. (2017). Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach. IEEE Communications Magazine, 55(12), 31–37.

    Article  Google Scholar 

  109. Hosseini, M. P., Tran, T. X., Pompili, D., Elisevich, K., & Soltanian-Zadeh, H. (2017, July). Deep learning with edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big data. In 2017 IEEE International Conference on Autonomic Computing (ICAC) (pp. 83–92). IEEE.

    Chapter  Google Scholar 

  110. Cao, Y., Song, H., Kaiwartya, O., Zhou, B., Zhuang, Y., Cao, Y., & Zhang, X. (2018). Mobile edge computing for big-data-enabled electric vehicle charging. IEEE Communications Magazine, 56(3), 150–156.

    Article  Google Scholar 

  111. Roman, R., Lopez, J., & Mambo, M. (2018). Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems, 78, 680–698.

    Article  Google Scholar 

  112. Wang, T., Zhou, J., Huang, M., Bhuiyan, M. Z. A., Liu, A., Xu, W., &**e, M. (2018). Fog-based storage technology to fight with cyber threat. Future Generation Computer Systems, 83, 208–218.

    Article  Google Scholar 

  113. Peng, K., Lin, R., Huang, B., Zou, H., & Yang, F. (2013). Node importance of data center network based on contribution matrix of information entropy. Journal of Networks, 8(6), 1248.

    Article  Google Scholar 

  114. Peng, K., & Huang, B. (2015). The invulnerability studies on data center network. International Journal of Security and Its Applications, 9(11), 167–186.

    Article  Google Scholar 

  115. Peng, K., Leung, V., Zheng, L., Wang, S., Huang, C., & Lin, T. (2018). Intrusion detection system based on decision tree over big data in fog environment. Wireless Communications and Mobile Computing, 2018.

    Google Scholar 

  116. Du, M., Wang, K., Chen, Y., Wang, X. and Sun, Y., 2018. Big data privacy preserving in multi-access edge computing for heterogeneous Internet of Things. IEEE Communications Magazine, 56(8), pp. 62–67.

    Article  Google Scholar 

  117. Ray, P.P., Dash, D. and De, D., 2019. Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, pp. 226–239.

    Article  Google Scholar 

  118. Roy, S., Sarkar, D. and De, D., 2020. DewMusic: crowdsourcing-based internet of music things in dew computing paradigm. Journal of Ambient Intelligence and Humanized Computing, pp. 1–17.

    Google Scholar 

  119. De, Debashis. Mobile cloud computing: architectures, algorithms and applications. CRC Press, 2016.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anindita Raychaudhuri or Anwesha Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raychaudhuri, A., Mukherjee, A., De, D. (2021). SMEC: Sensor Mobile Edge Computing. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation