• 459 Accesses

Abstract

Electronic density-of-states in the extended and localized states govern optical and electrical properties. This chapter describes that studies upon electronic properties have rendered a lot of valuable ideas such as Tauc gap, mobility edge, and charged defects. In addition, we see that the concepts originally proposed for crystals as polaron and Urbach edge bear special importance in chalcogenide glasses. We also consider optical nonlinearity, which is conspicuous in the chalcogenide glass. Electrical conductions under dc and ac electric fields are also discussed. It is argued that the Meyer-Neldel rule poses inevitable problems for understanding the conduction mechanism in disordered materials. The final section refers to the composition dependence of the bandgap energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The absorption with s = 2 appears also in the indirect transition in crystals, which suggests that static and vibrational disorders play similar roles (suppressing wavenumber effects) in the electronic excitation.

  2. 2.

    Thin bulk samples can be prepared also through squeezing (Brandes et al. 1970) and polishing (Hamanaka et al. 1977).

  3. 3.

    Moss adopts “95”, not “77”, in his newer publication (Moss 1985). He also suggests that “108” may be more appropriate.

  4. 4.

    Note I = 2E2/377 in vacuum, where I (W/m2) and E (V/m) are the light intensity and the electric field.

  5. 5.

    In contrast to Dc(T) ∝ T3/2 in an ideal crystalline semiconductor (Kittel 2005), it is difficult to explicitly write down DC(T) for disordered semiconductors. And, some researchers have adopted an expression DC(T) ∝ D(Ec)T1, where D(Ec) is the density-of-state with the unit of cm−3 eV−1 (Mott and Davis 1979, Elliott 1990). However, since the exact form for D(Ec) is unknown, we prefer the present expression (Shimakawa 2019).

  6. 6.

    To get a sense of the DOS effect, we may take an ultimate example; in an intrinsic crystalline semiconductor having no gap states, EF(T) ≈ EF(0), and accordingly γ ≈ 0, which would give infinite EMN and σ00 = σ0.

References

  • S. Abe, Y. Toyozawa, Interband absorption spectra of disordered semiconductors in the coherent potential approximation. J. Phys. Soc. Jpn. 50, 2185–2194 (1981)

    Article  ADS  Google Scholar 

  • G.J. Adriaenssens, A. Eliat, in Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, ed. by A. Andriesh, M. Bertolotti, (Kluwer Academic Publishers, Dordrecht, 1996), p. 77

    Google Scholar 

  • S.C. Agarwal, Nature of localized states in amorphous semiconductors—a study by electron spin resonance. Phys. Rev. B 7, 685–691 (1973)

    Article  ADS  Google Scholar 

  • P.W. Anderson, Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955 (1975)

    Article  ADS  Google Scholar 

  • A.A. Andreev, B.T. Kolomiets, T.F. Mazets, A.L. Manukyan, S.K. Pavlov, Temperature dependence of the absorption edge of As2Se3 and AsSe in the solid and liquid states. Sov. Phys. Solid State 18, 29–31 (1976)

    Google Scholar 

  • N. Bacalis, E.N. Economou, M.H. Cohen, Simple derivation of exponential tails in the density of states. Phys. Rev. B 37, 2714–2717 (1988)

    Article  ADS  Google Scholar 

  • S.D. Baranovskii, V.G. Karpov, Localized electron states in glassy semiconductors (review). Sov. Phys. Semicond. 21, 1–10 (1987)

    Google Scholar 

  • G. Belev, D. Tonchev, B. Fogal, C. Allen, S.O. Kasap, Effects of oxygen and chlorine on charge transport in vacuum deposited pure a-Se films. J. Phys. Chem. Solids 68, 972–977 (2007)

    Article  ADS  Google Scholar 

  • E. Belin, C. Senenaud, C. Bonnelle, 2p photoabsorption in amorphous, trigonal and monoclinic selenium. J. Non-Cryst. Solids 27, 119–125 (1978)

    Article  ADS  Google Scholar 

  • M.L. Benkhedir, M. Mansour, F. Djefaflia, M. Brinza, G.J. Adriaenssens, Photocurrent measurements in chlorine-doped amorphous selenium. Phys. Stat. Sol. (b) 246, 1841–1844 (2009)

    Article  ADS  Google Scholar 

  • N.L. Boling, A.J. Glass, A. Owyoung, Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE J. Quant. Electron. 14, 601–608 (1978)

    Article  ADS  Google Scholar 

  • R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, Amsterdam, 2003)

    Google Scholar 

  • R.G. Brandes, F.P. Laming, A.D. Peason, Optically formed dielectric gratings in thick films of arsenic-sulfur glass. Appl. Opt. 9, 1712–1714 (1970)

    Article  ADS  Google Scholar 

  • K. Bushick, K.A. Mengle, S. Chae, E. Kioupakis, Electron and hole mobility of rutile GeO2 from first principles: An ultrawide-bandgap semiconductor for power electronics. Appl. Phys. Lett. 117, 182104 (2020)

    Article  ADS  Google Scholar 

  • A.W. Butterfield, The optical properties of vitreous AsxSe1-x thin films. Thin Solid Films 21, 287–296 (1974)

    Article  ADS  Google Scholar 

  • J.R. Chelikowsky, M. Schlűter, Electron states in α-quartz: A self-consistent pseudopotential calculation. Phys. Rev. B 15, 4020–4029 (1977)

    Article  ADS  Google Scholar 

  • Y. Cheng, D. Ren, H. Zhang, X. Cheng, First-principle study of the structural, electronic and optical properties of defected amorphous silica. J. Non-Cryst. Solids 416, 36–43 (2015)

    Article  ADS  Google Scholar 

  • K.-B. Chua, U. Österberg, Electron mean free path in fused silica and optical fiber perform. J. Appl. Phys. 95, 6204–6208 (2004)

    Article  ADS  Google Scholar 

  • M.F. Churbanov, V.G. Plotnichenko, Optical fibers from high-purity arsenic chalcogenide glasses, in Semiconducting Chalcogenide Glass III, Chap. 5, ed. by R. Fairman, B. Ushkov, (Elsevier, Amsterdam, 2004)

    Google Scholar 

  • G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous-silicon. Phys. Rev. Lett. 47, 1480–1483 (1981)

    Article  ADS  Google Scholar 

  • M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065–1068 (1969)

    Article  ADS  Google Scholar 

  • A. Daus, S. Knobelspies, G. Cantarella, G. Tröster, N-type to p-type transition upon phase change in Ge6Sb1Te2 compounds. Appl. Phys. Lett. 113, 102105 (2018)

    Article  ADS  Google Scholar 

  • J. Douady, B. Boulanger, E. Fuchs, F. Smektala, J. Troles, Symmetry and phase-matching properties of third-harmonic generation under the photoelastic effect in Ge-As-Se chalcogenide glasses. J. Opt. Soc. Am. B 22, 1486–1492 (2005)

    Article  ADS  Google Scholar 

  • D. A. Drabold, S. K. Estreichen (eds.), Theory of Defects in Semiconductors (Springer-Verlag, Berlin, 2007)

    MATH  Google Scholar 

  • N.S. Dutta, J.M.P. Almeida, C.R. Mendonca, C.B. Arnold1, Effects of disorder on two-photon absorption in amorphous semiconductors. Opt. Lett. 45, 3228–3231 (2020)

    Google Scholar 

  • S.R. Elliott, Ac conduction in amorphous-chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)

    Article  ADS  Google Scholar 

  • S.R. Elliott, Physics of Amorphous Materials, 2nd edn. (Longman Scientific & Technical, Essex, 1990)

    Google Scholar 

  • D. Emin, Phonon-assisted transition rates I. Optical-phonon-assisted hop** in solids. Adv. Phys. 24, 305–348 (1975)

    Article  ADS  Google Scholar 

  • D. Emin, Generalized adiabatic polaron hop**: Meyer-Neldel compensation and Poole-Frenkel behavior. Phys. Rev. Lett. 100, 166602 (2008)

    Article  ADS  Google Scholar 

  • R.C. Enck, Two-photon photogeneration in amorphous selenium. Phys. Rev. Lett. 31, 220–223 (1973)

    Article  ADS  Google Scholar 

  • A. Farag, J.T. Edmond, Optical absorption and electrical conductivity of glasses in the systems As2S3-xTex (for small x) and As2-ySbyS3. Philos. Mag. B 53, 413–430 (1986)

    Article  ADS  Google Scholar 

  • F.D. Fisher, J.M. Marshall, A.E. Owen, Transport properties and electronic structure of glasses in the arsenic-selenium system. Philos. Mag. B 33, 261–275 (1976)

    Article  ADS  Google Scholar 

  • J. Fortner, V.G. Karpov, M.-L. Saboungi, Meyer–Neldel rule for liquid semiconductors. Appl. Phys. Lett. 66, 997–999 (1995)

    Article  ADS  Google Scholar 

  • H. Fritzsche, Optical and electrical energy gaps in amorphous semiconductors. J. Non-Cryst. Solids 6, 49–71 (1971)

    Article  ADS  Google Scholar 

  • H. Fritzsche, Characterization of glow-discharge deposited a-Si:H. Solar Energy Mater. 3, 447–501 (1980)

    Article  ADS  Google Scholar 

  • A. Ganjoo, K. Shimakawa, Estimation of density of charged defects in amorphous chalcogenides from a.c. conductivity: Random-walk approach for bipolarons based on correlated barrier hop**. Philos. Mag. Lett. 70, 287–291 (1994)

    Article  ADS  Google Scholar 

  • E. Ghahramani, J.E. Sipe, Pressure dependence of the band gaps of semiconductors. Phys. Rev. B 40, 12516–12519 (1989)

    Article  ADS  Google Scholar 

  • E. Gnani, S. Reggiani, M. Rudan, Density of states and group velocity of electrons in SiO2 calculated from a full band structure. Phys. Rev. B 66, 195205 (2002)

    Article  ADS  Google Scholar 

  • T. Gotoh, Defect absorption in Ge2Sb2Te5 phase-change films. Phys. Status Solidi B 257, 1900278 (2020)

    Article  ADS  Google Scholar 

  • D.L. Griscom, The electronic structure of SiO2: a review of recent spectroscopic and theoretical advances. J. Non-Cryst. Solids 24, 155–234 (1977)

    Article  ADS  Google Scholar 

  • O. Güneş, C. Koughia, R.J. Curry, A.B. Gholizadeh, G. Belev, K.O. Ramaswami, S.O. Kasap, Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films. J. Mater. Sci. Mater. Electron. 30, 16833–16842 (2019)

    Article  Google Scholar 

  • K. Hachiya, Electronic structure of the wrong-bond states in amorphous germanium sulphides. J. Non-Cryst. Solids 321, 217–224 (2003)

    Article  ADS  Google Scholar 

  • V. Halpern, Localized electron states in the arsenic chalcogenides. Philos. Mag. 34, 331–335 (1976)

    Article  ADS  Google Scholar 

  • H. Hamanaka, K. Tanaka, S. Iizima, Reversible photostructural change in melt-quenched As2S3 glass. Solid State Commun. 23, 63–65 (1977)

    Article  ADS  Google Scholar 

  • S. Hosokawa, K. Tamura, Optical absorption spectra of fluid selenium near the nonmetal transition region. J. Non-Cryst. Solids 117(118), 489–492 (1990)

    Article  ADS  Google Scholar 

  • M.A. Hughes, W.J. Yang, D.W. Hewak, Spectral broadening in femtosecond laser written waveguides in chalcogenide glass. J. Opt. Soc. Am. B 26, 1370–1378 (2009)

    Article  ADS  Google Scholar 

  • M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.-H. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry, N-type chalcogenides by ion implantation. Nat. Commun. 5, 5346 (2014)

    Article  ADS  Google Scholar 

  • J. Ihm, Optical absorption tails and the structure of chalcogenide glasses. J. Phys. C Solid State Phys. 18, 4741–4751 (1985)

    Article  ADS  Google Scholar 

  • I. Inagawa, S. Morimoto, T. Yamashita, I. Shirotani, Temperature dependence of transmission loss of chalcogenide glass fibers. Jpn. J. Appl. Phys. 36, 2229–2235 (1997)

    Article  ADS  Google Scholar 

  • S. Itoh, K. Nakao, Electronic structure of VAP in sulfur. J. Phys. Soc. Jpn. 55, 268–273 (1986)

    Google Scholar 

  • M. Itoh, Electronic structures of Ag(Cu)-As-Se glasses, J. Non-Cryst. Solids 210, 178–186 (1997)

    Google Scholar 

  • S.R. Johnson, T. Tiedje, Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995)

    Article  ADS  Google Scholar 

  • P. Jovari, S.N. Yannopoulos, I. Kaban, A. Kalampounias, I. Lishchynskyy, B. Beuneu, O. Kostadinova, E. Welter, A. Schops, Structure of AsxTe100−x (20 ≤ x ≤ 60) glasses investigated with X-ray absorption fine structure, X-ray and neutron diffraction, and reverse Monte Carlo simulation. J. Chem. Phys. 129, 214502 (2008)

    Article  ADS  Google Scholar 

  • K. Kajihara, M. Hirano, L. Skuja, H. Hosono, Intrinsic defect formation in amorphous SiO2 by electronic excitation: bond dissociation versus Frenkel mechanisms. Phys. Rev. B 78, 094201 (2008)

    Article  ADS  Google Scholar 

  • S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Stat. Sol. (b) 246, 1794–1805 (2009)

    Article  ADS  Google Scholar 

  • M. Kastner, Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys. Rev. Lett. 28, 355–357 (1972)

    Article  ADS  Google Scholar 

  • M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507 (1976)

    Article  ADS  Google Scholar 

  • T. Kato, K. Tanaka, Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 44, 7340–7344 (2005)

    Article  ADS  Google Scholar 

  • G. Kemeny, B. Rosenberg, Theory of the pre-exponential factor in organic semiconductors. J. Chem. Phys. 52, 4151 (1970)

    Article  ADS  Google Scholar 

  • M. Kikuchi, The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors. J. Appl. Phys. 64, 4997–5001 (1988)

    Article  ADS  Google Scholar 

  • S. Kirkpatrik, Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)

    Article  ADS  Google Scholar 

  • M. Kitao, T. Mochizuki, H. Ikeda, H. Hasegawa, S. Yamada, Optical absorption and photoconductivity of amorphous As2Se3. Rept. Electron. Lab. Shizuoka Univ. 12, 45–54 (1977)

    Google Scholar 

  • C. Kittel, Introduction to Solid State Physics 8th Ed (Wiley, New York, 2005)

    Google Scholar 

  • A.V. Kolobov, On the origin of p-type conductivity in amorphous chalcogenides. J. Non-Cryst. Sol. 198–200, 728–731 (1996)

    Article  ADS  Google Scholar 

  • A.V. Kolobov, M. Kondo, H. Oyanagi, A. Matsuda, K. Tanaka, Negative correlation energy and valence alternation in amorphous selenium: an in situ optically induced ESR study. Phys. Rev. B 58, 12004–12010 (1998)

    Article  ADS  Google Scholar 

  • A.V. Kolobov, Y. Saito, P. Fons, M. Krbal, Structural metastability in chalcogenide semiconductors: the role of chemical bonding. Phys. Stat. Sol. B 257(11), 2000138 (2020)

    Article  ADS  Google Scholar 

  • P.E. Lippens, J.C. Jumas, J. Olivier-Fourcade, L. Aldon, A. Gheorghiu-du la Rocque, C. Sĕnĕmaud, Electronic structure of Ge–As–Te glasses. J. Phys. Chem. Solids 61, 1761–1767 (2000)

    Article  ADS  Google Scholar 

  • L. Martin-Samos, Y. Limoge, G. Roma, Defects in amorphous SiO2: valence alternation pair model. Phys. Rev. B 76, 104203 (2007)

    Article  ADS  Google Scholar 

  • O. Matsuda, T. Ohba, K. Murase, I. Ono, P. Grekos, T. Kouchi, M. Nakatake, M. Tamura, H. Namatame, S. Hosokawa, M. Taniguchi, Photoemission and inverse-photoemission study of the electronic structure of p- and n-type amorphous Ge-Se-Bi films. J. Non-Cryst. Solids 198, 688–691 (1996)

    Article  ADS  Google Scholar 

  • R.M. Mehra, S. Kohli, A. Pundir, V.K. Sachdev, P.C. Mathur, n-type conduction in Pb doped Se–In chalcogenide glasses. J. Appl. Phys. 81, 7842–7844 (1997)

    Article  ADS  Google Scholar 

  • N. Mehta, Meyer-Neldel rule in chalcogenide glasses: Recent observations and their consequences. Curr. Opinion Solid State Mater. Sci. 14, 95–106 (2010)

    Article  ADS  Google Scholar 

  • W. Meyer, H. Neldel, Relation between the energy constant (epsilon) and the quantity constant (alpha) in the conductivity-temperature formula of oxide semiconductors. Z. Tech. Phys. 18, 588–593 (1937)

    Google Scholar 

  • K. Morigaki, S. Kugler, K. Shimakawa, Amorphous Semiconductors: Structural, Optical, and Electronic Properties (John Wiley & Sons Ltd., West Sussex, 2017)

    Google Scholar 

  • T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Sol. (b) 131, 415–427 (1985)

    Article  ADS  Google Scholar 

  • N.F. Mott, Conduction in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  • N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  • A. Mukherjee, D. Vasileska, A.H. Goldan, Hole transport in selenium semiconductors using density functional theory and bulk Monte Carlo. J. Appl. Phys. 124, 235102 (2018)

    Article  ADS  Google Scholar 

  • S. Mukhopadhyay, P.V. Sushko, A.M. Stoneham, A.L. Shluger, Correlation between the atomic structure, formation energies, and optical absorption of neutral oxygen vacancies in amorphous silica. Phys. Rev. B 71, 235204 (2005)

    Article  ADS  Google Scholar 

  • R. Murti, S.K. Tripathi, N. Goyal, S. Prakash, Random free energy barrier hop** model for ac conduction in chalcogenide glasses. AIP Adv. 6, 035010 (2016)

    Article  ADS  Google Scholar 

  • K. Nagata, Y. Miyamoto, H. Nishimura, H. Suzuki, S. Yamasaki, Photoconductivity and photoacoustic spectra of trigonal, rhombohedral, orthorhombic, and α-, β-, and γ-monoclinic selenium. Jpn. J. Appl. Phys. 24, L858–L860 (1985)

    Article  ADS  Google Scholar 

  • S. Narushima, M. Hiroki, K. Ueda, K. Shimizu, T. Kamiya, M. Hirano, H. Hosono, Electrical properties and local structure of n-type conducting amorphous indium sulphide. Philos. Mag. Lett. 84, 665–671 (2004)

    Article  ADS  Google Scholar 

  • K.L. Ngai, Meyer–Neldel rule and anti Meyer–Neldel rule of ionic conductivity: conclusions from the coupling model. Solid State Ionics 105, 231–235 (1998)

    Article  Google Scholar 

  • K. Ogusu, K. Takayama, Optical bistability in photonic crystal microrings with nonlinear dielectric materials. Opt. Express 16, 7525–7539 (2008)

    Article  ADS  Google Scholar 

  • K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–267 (2004)

    Article  ADS  Google Scholar 

  • H. Oheda, The exponential absorption edge in amorphous Ge–Se compounds. Jpn. J. Appl. Phys. 18, 1973–1978 (1979)

    Article  ADS  Google Scholar 

  • H. Okamoto, K. Hattori, Y. Hamakawa, Phenomenological scaling of optical absorption in amorphous semiconductors. J. Non-Cryst. Solids 198–200, 124–127 (1996)

    Article  ADS  Google Scholar 

  • I. Ono, P.C. Grekos, T. Kouchi, M. Nakatake, M. Tamura, S. Hosokawa, H. Namatame, M. Taniguchi, A study of electronic states of trigonal and amorphous Se using ultraviolet photoemission and inverse-photoemission spectroscopies. J. Phys. Condens. Matter 8, 7249–7261 (1996)

    Article  ADS  Google Scholar 

  • H. Overhof, W. Beyer, A model for the electronic transport in hydrogenated amorphous silicon. Philos. Mag. B 43, 433–450 (1981)

    Article  ADS  Google Scholar 

  • H. Overhof, P. Thomas, The statistical shift model for the Meyer-Neldel rule, in Defect Diffusion Forum, vol. 192, (Trans Tech Publications Ltd., Switzerland, 2001), pp. 1–14

    Google Scholar 

  • S.R. Ovshinsky, Chemical modification of amorphous chalcogenides, in 7th ICALS Amorphous and Liquid Semiconductors, ed. by W. E. Spear, (Univ. Edinburgh, Edinburgh, 1977), pp. 519–523

    Google Scholar 

  • S.R. Ovshinsky, D. Adler, Local structure, bonding, and electronic properties of covalent amorphous semiconductors. Contemp. Phys. 19, 109–126 (1978)

    Article  ADS  Google Scholar 

  • Y. Pan, F. Inam, M. Zhang, D.A. Drabold, Atomistic origin of Urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008)

    Article  ADS  Google Scholar 

  • J.-W. Park, S.H. Eom, H. Lee, J.L.F. Da Silva, Y.-S. Kang, T.-Y. Lee, Y.H. Khang, Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory. Phys. Rev. B 80, 115209 (2009)

    Article  ADS  Google Scholar 

  • E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, S.N. Taraskin, S.R. Elliott, Extracting accurate optical parameters from glasses using terahertz time-domain spectroscopy. J. Non-Cryst. Solids 355, 1824–1827 (2009)

    Article  ADS  Google Scholar 

  • J. Pétursson, J.M. Marshall, A.E. Owen, Optical absorption in As-Se glasses. Philos. Mag. B 63, 15–31 (1991)

    Article  ADS  Google Scholar 

  • J.C. Phillips, Bonds and Bands in Semiconductors (Academic Press, New York, 1973)

    Google Scholar 

  • R. Rajesh, J. Philip, Carrier-type reversal in metal modified chalcogenide glasses: Results of thermal transport measurements. J. Appl. Phys. 93, 9737–9742 (2003)

    Article  ADS  Google Scholar 

  • A. Regmi, A. Ganjoo, D. Zhao, H. Jain, I. Biaggio, Fast excited state diffusion in a-As2Se3 chalcogenide films. Appl. Phys. Lett. 101, 061911 (2012)

    Article  ADS  Google Scholar 

  • J.R. Reitz, Electronic band structure of selenium and tellurium. Phys. Rev. 105, 1233–1257 (1957)

    Article  ADS  MATH  Google Scholar 

  • G.G. Roberts, N. Apsley, R.W. Munn, Temperature dependent electronic conduction in semiconductors. Phys. Rep. 60, 59–150 (1980)

    Article  ADS  Google Scholar 

  • J. Robertson, Electronic structure of amorphous semiconductors. Adv. Phys. 32, 361–452 (1983)

    Article  ADS  Google Scholar 

  • E. Romanova, Y. Kuzyutkina, V. Shiryaev, N. Abdel-Moneim, D. Furniss, T. Benson, A. Seddon, S. Guizard, Measurement of non-linear optical coefficients of chalcogenide glasses near the fundamental absorption band edge. J. Non-Cryst. Solids 480, 13–17 (2018)

    Article  ADS  Google Scholar 

  • B.S. Sa, J. Zhou, R. Ahuja, Z.M. Sun, First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Comput. Mater. Sci. 82, 66–69 (2014)

    Article  Google Scholar 

  • K. Saito, A.J. Ikushima, Absorption edge in silica glass. Phys. Rev. B 62, 8584–8587 (2000)

    Article  ADS  Google Scholar 

  • A. Saitoh, K. Tanaka, Optical nonlinearity in chalcogenide glasses for near-infrared all-optical devices. J. Optoelectron. Adv. Mater. 13, 65–68 (2011)

    Google Scholar 

  • S.D. Savransky, A. Yelon, Interpretation and consequences of Meyer–Neldel rule for conductivity of phase change alloys. Phys. Status Solidi A 207, 627–630 (2010)

    Article  ADS  Google Scholar 

  • M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990)

    Article  ADS  Google Scholar 

  • K. Shimakawa, Electrical transport properties of glass, in Springer Handbook of Glass, ed. by J. D. Musgraves, J. Hu, L. Calvez, (Springer Nature Switzerland AG, Cham, Switzerland, 2019)

    Google Scholar 

  • K. Shimakawa, F. Abdel-Wahab, The Meyer–Neldel rule in chalcogenide glasses. Appl. Phys. Lett. 70, 652–654 (1997)

    Article  ADS  Google Scholar 

  • K. Shimakawa, M. Aniya, Dynamics of atomic diffusion in condensed matter: origin of the Meyer-Neldel compensation law. Monatshefte Chem. 144, 67–71 (2013)

    Article  Google Scholar 

  • K. Shimakawa, A. Ganjoo, Ac photoconductivity of hydrogenated amorphous silicon: Influence of long-range potential fluctuations. Phys. Rev. B 65, 165213 (2002)

    Article  ADS  Google Scholar 

  • K. Shimakawa, S. Kasap, Dynamics of carrier transport in nanoscale materials: origin of non-Drude behavior in the terahertz frequency range. Appl. Sci. 6, 50 (2016)

    Article  Google Scholar 

  • V.S. Shiryaev, M.F. Churbanov, Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics. J. Non-Cryst. Solids 475, 1–9 (2017)

    Article  ADS  Google Scholar 

  • K.V. Shportko, Disorder and compositional dependences in Urbach-Martienssen tails in amorphous (GeTe)x(Sb2Te3)1−x alloys. Sci. Rep. 9, 6030 (2019)

    Article  ADS  Google Scholar 

  • S.I. Simdyankin, M. Elstner, T.A. Niehaus, T. Frauenheim, S.R. Elliott, Influence of copper on the electronic properties of amorphous chalcogenides. Phys. Rev. B 72, 020202(R) (2005a)

    Article  ADS  Google Scholar 

  • S.I. Simdyankin, T.A. Niehaus, G. Natarajan, T. Frauenheim, S.R. Elliott, New type of charged defect in amorphous chalcogenides. Phys. Rev. Lett. 94, 086401 (2005b)

    Article  ADS  Google Scholar 

  • V.V. Sobolev, Optical spectra of arsenic chalcogenide glasses over a wide energy range of fundamental absorption. Glas. Phys. Chem. 28, 399–416 (2002)

    Article  Google Scholar 

  • K.-B. Song, S.-W. Sohn, J. Kim, K.-A. Kim, K. Cho, Chalcogenide thin-film transistors using oxygenated -type and -type phase change materials. Appl. Phys. Lett. 93, 043514 (2008)

    Article  ADS  Google Scholar 

  • W.E. Spear, A.R. Adams, Photogeneration of charge carriers and related optical properties in orthorhombic sulphur. J. Phys. Chem. Solids 27, 281–290 (1966)

    Article  ADS  Google Scholar 

  • R.A. Street, Luminescence in amorphous semiconductors. Adv. Phys. 25, 397–453 (1976)

    Article  ADS  Google Scholar 

  • R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296 (1975)

    Article  ADS  Google Scholar 

  • I. Studenyak, M. Kranjčec, M. Kurik, Urbach rule in solid state physics. Intern. J. Opt. Appl. 4, 76–83 (2014)

    Google Scholar 

  • K. Suzuki, K. Matsumoto, H. Hayata, N. Nakamura, N. Minari, Mass spectrometric study of evaporated Se films and melt-quenched Se glasses. J. Non-Cryst. Solids 95 & 96, 555–562 (1987)

    Article  Google Scholar 

  • Y. Takahashi, H. Masai, T. Fujiwara, Nucleation tendency and crystallizing phase in silicate glasses: a structural aspect. Appl. Phys. Lett. 95, 071904 (2009)

    Article  ADS  Google Scholar 

  • Y. Takasaki, E. Maruyama, T. Uda, T. Hirai, Molecular do** in amorphous selenium. J. Non-Cryst. Solids 59&60, 949–952 (1983)

    Article  Google Scholar 

  • K. Tanaka, Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980)

    Article  ADS  Google Scholar 

  • K. Tanaka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270–1279 (1989a)

    Google Scholar 

  • K. Tanaka, Pressure studies of amorphous semiconductors, in Disordered Systems and New Materials, ed. by M. Borissov, N. Kirov, A. Vavrek, (World Scientific, Singapore, 1989a), pp. 290–309

    Google Scholar 

  • K. Tanaka, Wrong bond in glasses: a comparative study on oxides and chalcogenides. J. Opt. Adv. Matt. 4, 505–512 (2002)

    Google Scholar 

  • K. Tanaka, in Non-Crystalline Materials for Optoelectronics, ed. by G. Lucovsky, M. Popescu, (INOE, Bucharest, 2004) Chap. 4

    Google Scholar 

  • K. Tanaka, Minimal Urbach energy in non-crystalline materials. J. Non-Cryst. Solids 389, 35–37 (2014)

    Article  ADS  Google Scholar 

  • K. Tanaka, Gap states in non-crystalline selenium: roles of defective structures and impurities. J. Optoelectron. Adv. Mater. 17, 1716–1727 (2015)

    Google Scholar 

  • K. Tanaka, Have we understood the optical absorption edge in chalcogenide glasses? J. Non-Cryst. Solids 431, 21–24 (2016)

    Article  ADS  Google Scholar 

  • K. Tanaka, Optical nonlinearity in photonic glasses, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper, 2nd edn., (Springer, New York, 2017) Chap. 42

    Google Scholar 

  • K. Tanaka, Excitation-induced effects in selenium clusters: molecular-orbital analyses. J. Optoelectron. Adv. Mater. 19, 586–594 (2017b)

    Google Scholar 

  • K. Tanaka, Amorphous selenium and nanostructures, in Springer Handbook of Glass, Chap. 19, ed. by J. D. Musgraves, J. Hu, L. Calvez, (Springer Nature Switzerland AG, Cham, Switzerland, 2019), pp. 645–685

    Chapter  Google Scholar 

  • K. Tanaka, Y. Kasanuki, A. Odajima, Physical properties and photoinduced changes of amorphous Ge-S films. Thin Solid Films 117, 251–260 (1984)

    Article  ADS  Google Scholar 

  • K. Tanaka, T. Gotoh, N. Yoshida, S. Nonomura, Photothermal deflection spectroscopy of chalcogenide glasses. J. Appl. Phys. 91, 125 (2002)

    Article  ADS  Google Scholar 

  • K. Tanaka, N. Nemoto, H. Nasu, Photoinduced phenomena in Na2S-GeS2 glasses. Jpn. J. Appl. Phys. 42, 6748–6752 (2003)

    Google Scholar 

  • S.N. Taraskin, S.I. Simdyankin, S.R. Elliott, J.R. Neison, T. Lo, Universal features of terahertz absorption in disordered materials. Phys. Rev. Lett. 97, 055504-1-4 (2006)

    Article  ADS  Google Scholar 

  • E. Tarnow, A. Antonelli, J.D. Joannopoulos, Crystalline As2Se3. Electronic and geometric structure. Phys. Rev. B 34, 40594073 (1986)

    Article  Google Scholar 

  • E. Tarnow, J.D. Joannopoulos, M.C. Payne, Antisites, antistructures, and bond-switching reactions in layered chalcogenides. Phys. Rev. B 39, 6017–6024 (1989)

    Article  ADS  Google Scholar 

  • J. Tauc, Highly transparent glasses, in Optical Properties of Highly Transparent Solids, ed. by S. S. Mitra, B. Bendow, (Plenum Publishing Corp, New York, 1975), pp. 245–260

    Chapter  Google Scholar 

  • P.C. Taylor, The localization of electrons in amorphous semiconductors: a twenty-first century perspective. J. Non-Cryst. Solids 352, 839–850 (2006)

    Article  ADS  Google Scholar 

  • N. Terakado, K. Tanaka, The structure and optical properties of GeO2–GeS2 glasses. J. Non-Cryst. Solids 354, 1992–1999 (2008)

    Article  ADS  Google Scholar 

  • H. Tichá, L. Tichý, P. Nagels, E. Sleeckx, R. Callaerts, Temperature dependence of the optical gap in thin amorphous films of As2S3, As2Se3 and other basic non-crystalline chalcogenides. J. Phys. Chem. Solids 61, 545–550 (2000)

    Article  ADS  Google Scholar 

  • L. Tichý, H. Tichá, Interrelation between the photo-induced shift of the optical band gap and Urbach/exponential edge slope in a-Se. J. Non-Cryst. Solids 515, 113–115 (2019)

    Article  ADS  Google Scholar 

  • L. Tichý, H. Tichá, P. Nagels, E. Sleeckx, R. Callaerts, Optical gap and Urbach edge slope in a-Se. Mater. Lett. 26, 279–283 (1996)

    Article  Google Scholar 

  • N. Tohge, T. Minami, Y. Yamamoto, M. Tanaka, Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se. J. Appl. Phys. 51, 1048–1053 (1980)

    Article  ADS  Google Scholar 

  • N. Tohge, K. Kanda, T. Minami, Formation of chalcogenide glass p-n junctions. Appl. Phys. Lett. 48, 1739–1741 (1986)

    Article  ADS  Google Scholar 

  • D. Tsiulyanu, Heterostructures on chalcogenide glass and their applications, in Semiconducting Chalcogenide Glass III. Chap. 2, ed. by R. Fairman, B. Ushkov, (Elsevier, Amsterdam, 2004)

    Google Scholar 

  • F. Urbach, The long-wavelength edge of photographic sensitivity and the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953)

    Article  ADS  Google Scholar 

  • D. Vanderbilt, J.D. Joannopoulos, Theory of defect states in glassy As2Se3. Phys. Rev. B 23, 2596–2606 (1981)

    Article  ADS  Google Scholar 

  • D. Vanderbilt, J.D. Joannopoulos, Total energies in Se. III. Defects in the glass. Phys. Rev. B 27, 6311–6321 (1983)

    Article  ADS  Google Scholar 

  • E.M. Vinod, R. Naik, A.P.A. Faiyas, R. Ganesan, K.S. Sangunni, Temperature dependent optical constants of amorphous Ge2Sb2Te5 thin films. J. Non-Cryst. Solids 356, 2172–2174 (2010)

    Article  ADS  Google Scholar 

  • J.F. Wager, Low-field transport in SiO2. J. Non-Cryst. Solids 459, 111–115 (2017)

    Article  ADS  Google Scholar 

  • J.F. Wagner, Real- and reciprocal-space attributes of band tail states. AIP Adv. 7, 125321 (2017)

    Article  ADS  Google Scholar 

  • W.W. Warren Jr., R. Dupree, Structural and electronic transformations of liquid selenium at high temperature and pressure: A 77Se NMR study. Phys. Rev. B 22, 2257–2275 (1980)

    Article  ADS  Google Scholar 

  • Y. Watanabe, H. Kawazoe, M. Yamane, Imperfections in amorphous chalcogenides. III. Interacting-lone-pair model for localized gap states based on a tight-binding energy-band calculation for As2S3. Phys. Rev. B 38, 5677–5683 (1988)

    Article  ADS  Google Scholar 

  • B.R. Weinberger, C.B. Roxlo, S. Etemad, G.L. Baker, J. Orenstein, Optical absorption in polyacetylene: A direct measurement using photothermal deflection spectroscopy. Phys. Rev. Lett. 53, 86–89 (1984)

    Article  ADS  Google Scholar 

  • B.A. Weinstein, R. Zallen, M.L. Slade, The effect of pressure on optical properties of As2S3 glass. J. Non-Cryst. Solids 35&36, 1255–1259 (1980)

    Article  Google Scholar 

  • B.A. Weinstein, R. Zallen, M.L. Slade, J.C. Mikkelsen, Pressure-optical studies of GeS2 glasses and crystals – Implications for network topology. Phys. Rev. B 25, 781–792 (1982)

    Article  ADS  Google Scholar 

  • S.H. Wemple, M. DiDomenico Jr., Optical dispersion and the structure of solids. Phys. Rev. Lett. 23, 1156–1160 (1969)

    Article  ADS  Google Scholar 

  • D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972)

    Article  ADS  Google Scholar 

  • M. Xu, Y.Q. Cheng, H.W. Sheng, E. Ma, Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 103, 195502 (2009)

    Article  ADS  Google Scholar 

  • A. Yelon, B. Movaghar, R.S. Crandal, Multi-excitation entropy: Its role in thermodynamics and kinetics. Rep. Prog. Phys. 69, 1145–1194 (2006)

    Article  ADS  Google Scholar 

  • P.A. Young, Optical properties of vitreous arsenic trisulphide. J. Phys. C Solid State Phys. 4, 93–106 (1971)

    Article  ADS  Google Scholar 

  • M. Zalkovskij, C.Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P.U. Jepsen, A.V. Lavrinenko, Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Appl. Phys. Lett. 100, 031901 (2012)

    Article  ADS  Google Scholar 

  • R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, K., Shimakawa, K. (2021). Electronic Properties. In: Amorphous Chalcogenide Semiconductors and Related Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-69598-9_4

Download citation

Publish with us

Policies and ethics

Navigation