Nanosensors for the Detection of Chemical Food Adulterants

  • Chapter
  • First Online:
Nanotoxicology and Nanoecotoxicology Vol. 2

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 67))

Abstract

Food adulteration is a major problem all across the globe and needs to be handled with the highest priority. Growing awareness about food safety and quality leads to the development of tools and techniques for the detection of food adulterants. With the advent of nanotechnology, it is now possible to detect the food adulterants using nanomaterials with enhanced sensitivity and low detection limits. In this chapter, several chemical food adulterants with their worldwide adulteration incidences and hazardous effect on human life have been discussed. Further, for each adulterant, novel nanosensors are described for their detection in various food samples along with the detection limit and mode of action. It was found that several major food adulterants exist like preservatives, melamine, urea, antibiotics, synthetic food dyes, dioxins, sucrose, starch, etc. Some of them possess a hazardous effect on human health. Several kinds of nanosensors exist for their detection in a variety of food samples like beverages, fish, vegetables, namkeen, sauces, milk, and milk products. Though the area of nanosensors based detection of food adulterants is growing swiftly, it has a long way to go since there are many adulterants for which no nanosensors are available. So, further research studies are needed to develop nanosensors for common food adulterants and explore the possibility of designing the novel nanosensors that could improve the detection sensitivity and specificity of the existing ones. With a tool as powerful as nanosensors, we will be better equipped to combat future scenarios of adulteration scandals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas ME, Luo W, Zhu L, Zou J, Tang H (2010) Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system. Food Chem 120:327–331

    Article  CAS  Google Scholar 

  • Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385

    Article  CAS  Google Scholar 

  • Afzal A, Mahmood MS, Hussain L, Akhtar M (2011) Adulteration and microbiological quality of milk (a review). Pak J Nutr 10:1195–1202

    Article  CAS  Google Scholar 

  • Aini BN, Ampon K, Siddiquee S (2016) Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol). Biosensors 6:32

    Article  CAS  Google Scholar 

  • Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL (2014) A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors (Basel) 14(7):13186–13209

    Article  CAS  Google Scholar 

  • Alvarez-Romero GA, Lozada-Ascencio SM, Rodriguez-Avila JA, Galán-Vidal CA, Páez-Hernández ME (2010) Potentiometric quantification of saccharin by using a selective membrane formed by pyrrole electropolymerization. Food Chem 120:1250e1254

    Article  CAS  Google Scholar 

  • Annamalai SK, Palani B, Pillai KC (2012) Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Coll Surf A Physicochem Eng Asp 395:207–216

    Article  CAS  Google Scholar 

  • Antiochia R, Gorton L (2007) Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosens Bioelectron 22:2611–2617

    Article  CAS  Google Scholar 

  • Apetrei C, Rodriguez-Mendez M, De Saja J (2005) Modified carbon paste electrodes for discrimination of vegetable oils. Sens Actuators B Chem 111:403–409

    Article  CAS  Google Scholar 

  • Bahmani K, Shahbazi Y, Nikousefat Z (2019) Monitoring and risk assessment of tetracycline residues in foods of animal origin. Food Sci Biotechnol 29(3):441–448

    Article  CAS  Google Scholar 

  • Barham GS, Khaskheli M, Soomro AH, Nizamani ZA (2014) Extent of extraneous water and detection of various adulterants in market milk at Mirpurkhas, Pakistan. Pak J Agric Vet Sci 7:83–89

    Google Scholar 

  • Benitez-Martinez S, Valcarcel M (2014) Graphene quantum dots as sensor for phenols in olive oil. Sens Actu B Chem 197:350–357

    Article  CAS  Google Scholar 

  • Brindha N, Chitra P, Janarthanan R, Murali A (2017) A study on detection of adulteration in milk samples from different regions of Thuraiyur district in Tamil Nadu. India Int J Curr Microbiol App Sci 6(12):3303–3310

    Article  CAS  Google Scholar 

  • Canbay E, Şahin B, Kıran M, Akyilmaz E (2015) MWCNT-cysteamine-Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite. Bioelectrochemistry 101:126–131

    Article  CAS  Google Scholar 

  • Cao X, Shen F, Zhang M, Sun C (2014) Rapid and highly-sensitive melamine sensing based on the efficient inner filter effect of Ag nanoparticles on the fluorescence of eco-friendly ZnSe quantum dots. Sens Actuators B 202:1175–1182

    Article  CAS  Google Scholar 

  • Cao GX, Wu XM, Dong YM, Li ZJ, Wang GL (2016) Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchim Acta 183:441–448

    Article  CAS  Google Scholar 

  • Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94:736–757

    Article  Google Scholar 

  • Centers for disease control and prevention (CDC) (2010) Available online: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html

  • Cerdan JF, Peris-Tortajada M, Puchades R, Maquieira A (1992) Automation of the determination of hydrogen peroxide, dichromate, formaldehyde and bicarbonate in milk by flow injection analysis. Fresenius J Anal Chem 344:123–127

    Article  CAS  Google Scholar 

  • Chen LM, Liu YN (2011) Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. ACS Appl Mater Interfaces 3:3091–3096

    Article  CAS  Google Scholar 

  • Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J Phys Chem C 114:93–100

    Article  CAS  Google Scholar 

  • Chipley JR (2010) Sodium benzoate and benzoic acid. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food. CRC Press Taylor and Francis, Boca Raton, pp 11–48

    Google Scholar 

  • Chobtang J, De Boer IJM, Hoogenboom RLAP, Haasnoot W, Kijlstra A, Meerburg BG (2011) The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain. Sensors 11:11692e11716

    Article  CAS  Google Scholar 

  • Code of Federal Regulations, Title 21. (1990) Food and Drugs, Parts 170–199; Office of Federal Regulations, National Archives Records Services, General Service Administration: Washington, DC

    Google Scholar 

  • Codex Stan (1995) Codex general standard for food additives, 192:85–185. http:// www.codexalimentarius.org/standards/gsfa/

  • Das S, Goswami B, Biswas K (2016) Milk adulteration and detection: a review. Sens Lett 14(1):4–18

    Article  Google Scholar 

  • Demirhan BE, Demirhan B, Kara HES (2015) Room-temperature phosphorescence determination of melamine in dairy products using l-cysteine-capped Mn-doped zinc sulfide (ZnS) quantum dots. J. Dairy Sci 98:2992–3000

    Article  CAS  Google Scholar 

  • Devrani M, Pal M (2018) How to Detect Adulteration of Maltodextrin in Milk? Processing technology

    Google Scholar 

  • Divya KB, Kumar SMH, Thompkinson DK, Sabikhi L (2012) Selection of levels of maltodextrin to improve the sensory and textural properties of omega-3 and fiber-enriched low fat buffalo milk. Indian J. Dairy Sci 65:262–263

    CAS  Google Scholar 

  • EFSA (2014) European Food Safety Authority Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. EFSA J 12(2):3550

    Google Scholar 

  • Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2015) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121

    Article  CAS  Google Scholar 

  • Ensafi AA, Jafari-Asl M, Rezaei B (2013) A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide-Co3O4 nanocomposite. Talanta 103:322–329

    Article  CAS  Google Scholar 

  • Field A, Field J (2010) Melamine and cyanuric acid do not interfere with Bradford and Ninhydrin assays for protein determination. Anal Methods 121:912–917

    CAS  Google Scholar 

  • Findikli Z, Turkoglu S (2014) Determination of the effects of some artificial sweeteners on human peripheral lymphocytes using the comet assay. J Toxicol Environ Health Sci 6(8):147–153

    Article  Google Scholar 

  • Food Safety and Standards Authority of India (FSSAI) (2012) Manual of methods of analysis of foods: milk and milk products; Food Safety and Standards Authority of India, Ministry of Health and Family Welfare. Government of India, New Delhi, pp 1–31

    Google Scholar 

  • FSSAI (2011) Food safety and standards (contaminants, toxins and residues) regulations, 2011

    Google Scholar 

  • Gabriels G, Lambert M, Smith P, Wiesner L, Hiss D (2015) Melamine contamination in nutritional supplements - Is it an alarm bell for the general consumer, athletes, and ‘Weekend Warriors’? Nutr J 14:69

    Article  CAS  Google Scholar 

  • Goswami TK, Gupta SK (2008) Detection of dilution of milk with the help of glass transition temperature by differential scanning calorimetry (DSC). Afr J Food Sci 2:7–10

    Google Scholar 

  • Gupta S, Sundarrajan M, Rao KVK (2003) Tumor promotion by metanil yellow and malachite green during rat hepatocarcinogenesis is associated with dysregulated expression of cell cycle regulatory proteins. Teratog Carcinog Mutagen 23:301–312

    Article  CAS  Google Scholar 

  • Haldorai Y, Hwang SK, Gopalan AI, Huh YS, Han YK, Voit W, Sai-Anand G, Lee KP (2016) Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosens Bioelectron 15(79):543–552

    Article  CAS  Google Scholar 

  • He Z, Zang S, Liu Y, He Y, Lei H (2015) A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens Bioelectron 73:85–92

    Article  CAS  Google Scholar 

  • He Q, Liu J, Liu X, Li G, Deng P, Liang J, Chen D (2018) Sensitive and selective detection of tartrazine based on TiO2-electrochemically reduced graphene oxide composite-modified electrodes. Sensors 18:1911

    Article  CAS  Google Scholar 

  • Hossain MB, Rana MM, Abdulrazak LF, Mitra S, Rahman M (2019) Graphene-MoS 2 with TiO 2 eSiO 2 layers based surface plasmon resonance biosensor: numerical development for formalin detection. Biochem Biophys Rep 18:100639

    Google Scholar 

  • Hou X, Wang Q, Mao G, Liu H, Yu R, Ren X (2018) Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate. Appl Surf Sci 437:92–97

    Article  CAS  Google Scholar 

  • IARC (2004) Monographs on the evaluation of carcinogenic risks to humans, Volume 88, Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxy-2- propanol; International Agency for Research on Cancer: Lyon, France

    Google Scholar 

  • Jakhar S, Pundir CS (2018) Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosens Bioelectron 100:242–250

    Article  CAS  Google Scholar 

  • Jaleel JA, Pramod K (2018) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321

    Article  CAS  Google Scholar 

  • Johnson R (2014) Food fraud and economically motivated adulteration of food and food ingredients: congressional research service

    Google Scholar 

  • Kalaiyarasan G, Anusuya K, Joseph J (2017) Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula. Appl Surf Sci 420:963–969

    Article  CAS  Google Scholar 

  • Kamthania M, Saxena J, Saxena K, Sharma DK (2014) Milk adulteration: methods of detection and remedial measures. Int J Eng Tech Res 15:20

    Google Scholar 

  • Kasai A, Hiramatsu N, Hayakawa K, Yao J, Maeda S, Kitamura M (2006) High levels of dioxin-like potential in cigarette smoke evidenced by in vitro and in vivo biosensing. Cancer Res 66:7143e7150

    Article  Google Scholar 

  • Kmecl V, Znidarcic D, Franic M, Ban SG (2019) Nitrate and nitrite contamination of vegetables in the Slovenian market. Food Add Contam Part B 12(3):216–223

    Article  CAS  Google Scholar 

  • Kochana J, Kozak J, Skrobisz A, Wozniakiewicz M (2012) Tyrosinase biosensor for benzoic acid inhibition-based determination with the use of a flow-batch monosegmented sequential injection system. Talanta 96:147–152

    Article  CAS  Google Scholar 

  • Kohn R (2000) Caution needed when interpreting MUNs. Hoard’s Dairyman 145:58

    Google Scholar 

  • Kumar P, Kumar P, Manhas S, Navani NK (2019) A simple method for detection of anionic detergents in milk using unmodified gold nanoparticles. Sens Actu B. https://doi.org/10.1016/j.snb.2016.04.066

    Book  Google Scholar 

  • Kuswandi B, Futra D, Heng LY (2017) Nanosensors for the detection of food contaminants. Nanotechnology applications in food flavor, stability, nutrition and safety, pp 307–333

    Google Scholar 

  • Lei CH, Zhao XE, Jiao SL, He L, Li Y, Zhu SY, You JM (2016) A turn-on fluorescent sensor for the detection of melamine based on the anti-quenching ability of Hg2+ to carbon nanodots. Anal Methods 8:4438–4444

    Article  CAS  Google Scholar 

  • Li XZ, Yu R, Wei XW (2010) Template-based in situ fabrication and melamine sensing of bis (8-quinolinolato) zinc(II) complex nanorod arrays. Chem Lett 39:114–115

    Article  CAS  Google Scholar 

  • Li H, Sun DE, Liu YJ, Liu ZH (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156

    Article  CAS  Google Scholar 

  • Lihua YL, Luo ZZ, Tang H (2013) Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide. Sens Actu B Chem 185:438–444

    Article  CAS  Google Scholar 

  • Lin YC, Wu T, Lin YW (2018) Fluorescence sensing of mercury(ii) and melamine in aqueous solutions through microwave-assisted synthesis of egg-white-protected gold nanoclusters. Anal Methods 10:1624–1632

    Article  CAS  Google Scholar 

  • Liu D, Tang B, Zhang X, Que H, Yang G (2012) Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Chen Biosens Bioelectron 41:551–556

    Article  CAS  Google Scholar 

  • Liu BQ, Zhang B, Chen GN, Tang DP (2014) Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181:257–262

    Article  CAS  Google Scholar 

  • Llopis-Lorente A, Villalonga R, Marcos MD, Martínez-Máñez R, Sancenón F (2018) A versatile new paradigm for the design of optical nanosensors based on enzyme-mediated detachment of labeled reporters: the example of urea detection. Chem 25(14):3575–3581

    Article  CAS  Google Scholar 

  • Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2020) Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta 1093:93–105

    Article  CAS  Google Scholar 

  • Madougou AM, Douny C, Moula N, Scippo ML, Delcenserie V, Daube G, Hamani M, Korsak N (2019) Survey on the presence of antibiotic residues in raw milk samples from six sites of the dairy pool of Niamey, Niger. Vet World 12(12):1970–1974

    Article  CAS  Google Scholar 

  • Makadiya J, Pandey A (2015) Quality assessment and detection of adulteration in buffalo milk collected from different areas of Gandhinagar by physico-chemical method. Int J Pharm Tech Res 8(4):602–607

    CAS  Google Scholar 

  • Malame PR, Bhuiya TK, Gupta RK (2014) Microwave reflectometry based electrical characterization of milk for adulteration detection. Adv Electron Electric Eng 4:487–492

    Google Scholar 

  • Mani V, Dinesh B, Chen SM, Saraswathi R (2014) Direct electrochemistry of myoglobin at reduced graphene oxide multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. Biosens Bioelectron 53:420–427

    Article  CAS  Google Scholar 

  • Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203e1210

    Article  CAS  Google Scholar 

  • Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D’Amico A, Di Natale C, Compagnone D (2005) Biomimetic sensors for dioxins detection in food samples. Sens Actuators B 111e112:376e384

    Google Scholar 

  • Mauer LJ, Chernyshova AA, Hiatt A, Deering A, Davis R (2009) Melamine detection in infant formula powder using Near- and Mid-Infrared spectroscopy. J Agric Food Chem 57:3974–3980

    Article  CAS  Google Scholar 

  • Maurya S, Kumar K, Ahmad S, Khan AS, Gupta P, Kumar P (2017) Investigation of adulterants in milk and its products from Lucknow City. J Biol Sci Med 3(2):14–18

    Google Scholar 

  • Morsin M, Salleh MM, Umar AA (2012) Detection of boric acid using localized surface plasmon resonance sensor of gold nanoparticles. IMCS 2012 – The 14th International Meeting on Chemical Sensors. pp 1418–1421 ISBN 978-3-9813484-2-2

    Google Scholar 

  • Morsin M, Salleh MM, Umar AA, Sahdan MZ (2017) Gold nanoplates for a localized surface plasmon resonance-based boric acid sensor. Sensors 17:947

    Article  CAS  Google Scholar 

  • Mortensen A (2006) Sweeteners permitted in the European Union: safety aspects. Scand J Food Nutr 50:104e116

    Article  Google Scholar 

  • Mudgil D, Barak S (2013) Synthetic milk: a threat to Indian dairy industry. Carpathian J Food Sci Technol 5(1–2):64–68

    Google Scholar 

  • Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry-a review. Biosens (Basel) 4(4):472–493

    Article  Google Scholar 

  • Mutlu M (2010) In: Mutlu M (ed) Biosensors in food processing, safety, and quality control. CRC Press. https://doi.org/10.1201/b10466

  • Nayak DS, Shetti NP (2016) A novel sensor for a food dye erythrosine at glucose modified electrode. Sensors Actuators B Chem 230:140–148

    Article  CAS  Google Scholar 

  • Ngamchana S, Surareungchai W (2004) Sub-millimolar determination of formalin by pulsed amperometric detection. Anal Chim Acta 510:195–201

    Article  CAS  Google Scholar 

  • Nikoleli GP, Nikolelis DP, Methenitis C (2010) Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk. Anal Chim Acta 675:58–63

    Article  CAS  Google Scholar 

  • Nikolelis DP, Pantoulias S, Krull UJ, Zeng J (2001) Electrochemical transduction of the interactions of the sweeteners acesulfame-K, saccharin and cyclamate with bilayer lipid membranes (BLMs). Electrochim Acta 46:1025e1031

    Article  Google Scholar 

  • Park JW, Kurosawa S, Aizawa H, Hamano H, Harada Y, Asano S, Mizushima Y, Higaki M (2006) Dioxin immunosensor using anti-2,3,7,8-TCDD antibody which was produced with mono 6-(2,3,6,7-tetrachloroxanthene-9-ylidene) hexyl succinate as a hapten. Biosens Bioelectron 22:409e414

    Article  Google Scholar 

  • Pena F, Cárdenas S, Gallego M, Valcárcel M (2005) Direct olive oil authentication: detection of adulteration of olive oil with hazelnut oil by direct coupling of headspace and mass spectrometry, and multivariate regression techniques. J Chromato A 1074:215–221

    Article  CAS  Google Scholar 

  • Pouranik M, Siddiqua A, Sarkhel S, Tripathi M (2017) Adulteration in Local Available milk Samples of Jabalpur Regions- A comparative Study. Asian Resonan 6(III):135–139

    Google Scholar 

  • Prout W (2003) Preparation and analysis of urea. Clin Chem 49:699–705

    Google Scholar 

  • Purba MK, Agrawal N, Shukla SK (2015) Detection of non-permitted food colors in edibles. J Forensic Res S4: S4–003

    Google Scholar 

  • Qiu X, Lu L, Leng J, Yu Y, Wang W, Jiang M, Bai L (2016) An enhanced electrochemical platform based on grapheme oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine. Food Chem 190:889–895

    Article  CAS  Google Scholar 

  • Rai N, Banerjee D (2017) Melamine adulteration of food: detection by point-of-care testing tool. Curr Sci 112(3):454–456

    CAS  Google Scholar 

  • Rai N, Banerjee D, Bhattacharyya R (2014) Urinary melamine: proposed parameter of melamine adulteration of food. Nutrition 30:380–385

    Article  CAS  Google Scholar 

  • Ren SH, Liu SG, Ling Y, Li NB, Luo HQ (2018) Fluorescence detection of melamine based on inhibiting Cu2+−induced disaggregation of red-emitting silver nanoclusters. Spectrochim Acta A 201:112–118

    Article  CAS  Google Scholar 

  • Renny E, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2005) Enzyme based sensor for detection of urea in milk. Biotechnol Equip 19:198–201

    Article  Google Scholar 

  • Sadat A, Mustajab P, Khan IA (2006) Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J Food Eng 77:472–477

    Article  CAS  Google Scholar 

  • Saeedfar K, Heng LY, Ling TL, Rezayi M (2013) Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors (Basel) 13(12):16851–16866

    Article  CAS  Google Scholar 

  • Santos PM, Pereira-Filho ER, Rodriguez-Saona LE (2013) Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chem 138:19–24

    Article  CAS  Google Scholar 

  • Sarkar P, Panigrahi SS, Roy E, Banerjee P (2017) Chapter 10 Nanosensors in food safety. In: Portable biosensors and point-of-care systems. https://doi.org/10.1049/PBHE003E_ch10

  • Saxena B, Sharma S (2015) Food color induced hepatotoxicity in Swiss albino rats, Rattusnorvegicus. Toxicol Int 22:152

    Article  CAS  Google Scholar 

  • Scortichini G, Diletti G, Forti AF, Migliorati G (2004) Dioxin contamination of food in Italy: an overview of the situation 1999-2000. Vet Ital 40(1):22–31

    CAS  Google Scholar 

  • See AS, Salleh AB, Bakar FA, Yusof NA, Abdulamir AS, Heng LY (2010) Risk and health effect of boric acid. Am J Appl Sci 7:620–627

    Article  CAS  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology an overview. Nanotechnol Sci 3:1–15

    CAS  Google Scholar 

  • Seo S, Kwon MS, Phillips AW, Seo D, Kim J (2015) Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces. Chem Commun (Camb) 51(50):10229–10232

    Article  CAS  Google Scholar 

  • Shah A (2020) A novel electrochemical nanosensor for the simultaneous sensing of two toxic food dyes. ACS Omega 5:6187–6193

    Article  CAS  Google Scholar 

  • Shaikh N, Marri A, Qureshi B, Pathan M, Suthar V, Qureshi NA, Solangi BK, Kumari V (2016) Extent of formalin and cane sugar adulteration and its impact on physicochemical attributes of milk sold at hyderabad and its outskirts. Int J Sci Res 5(4):827–832

    Google Scholar 

  • Shaker EM, Abd-Alla AA, Elaref MY (2015) Detection of raw buffalo’s milk adulteration in Sohag Governorate. Assiut Vet Med J 61:38–45

    Article  Google Scholar 

  • Shan D, Shi Q, Zhu D, Xue H (2007) Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix. Talanta 72(5):1767–1772

    Article  CAS  Google Scholar 

  • Shan D, Li Q, Xue H, Cosnier S (2008) A highly reversible and sensitive tyrosinase inhibition-based amperometric biosensor for benzoic acid monitoring. Sens Actua B Chem 134(2):1016–1102

    Article  CAS  Google Scholar 

  • Sharma R, Seth R, Bauri AK (2011) Rapid methods for detection of adulterants in milk. In: Chemical analysis of value added dairy products and their quality assurance, winter school training programme manual, National Dairy Research Institute, Karnal, Haryana. NDRI Publication, Haryana, pp 184–185

    Google Scholar 

  • Silva RAB, Montes RHO, Richter EM, Munoz RAA (2012) Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food Chem 133:200–204

    Article  CAS  Google Scholar 

  • Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15(2):185–191

    Article  CAS  Google Scholar 

  • Singh M, Kumar V (2009) Preparation and characterization of melamine–formaldehyde–polyvinylpyrrolidone polymer resin for better industrial uses over melamine resins. J Appl Polym Sci 114:1870–1878

    Article  CAS  Google Scholar 

  • Singh P, Sahoo J, Chatli MK, Biswas AK (2013) Effect of different levels of baking powder on the physico-chemical and sensory attributes of chicken meat caruncles. Haryana Vet 52:17–21

    Google Scholar 

  • Singh S, Shah H, Shah R, Shah K (2017) Identification and estimation of non-permitted food colours (sudan and rhodamine-b dye) in chilli and curry powder by rapid colour test, thin layer chromatography and spectrophotometry. Int J Curr Microbiol App Sci 6(7):1970–1981

    Article  CAS  Google Scholar 

  • Singuluri H, Sukumaran MK (2014) Milk adulteration in Hyderabad, India—a comparative study on the levels of different adulterants present in milk. J Chromatogr Sep Tech 5:1–3

    Article  CAS  Google Scholar 

  • Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60:733e745

    Article  CAS  Google Scholar 

  • Sundari R, Hadibarata T, Heng LY, Ahmad M (2012) A New Biosensor Based on Nanogold Do** in P-HEMA Alcohol Oxidase Detects Formaldehyde in Fresh Food. Trend Appl Sci Res 7(9):737–747

    Article  CAS  Google Scholar 

  • Suwanaruang T (2018) Formalin contaminated in seafood and frozen meat at Somdet Market, Kalasin Province. J Environ Protect 9(9):1286–1293

    Article  CAS  Google Scholar 

  • Tang L, Mo S, Liu SG, Ling Y, Zhang XF, Li NB, Luo HQ (2018) A Sensitive “turn-on” fluorescent sensor for melamine based on FRET effect between polydopamine-glutathione nanoparticles and Ag nanoparticles. J Agric Food Chem 66:2174–2179

    Article  CAS  Google Scholar 

  • Tariq MA (2001) Subject: a close look at dietary patterns. http://www.dawn.com/2001/11/05/ebr13.htm. Accessed Feb 2011

  • Tfouni SAV, Toledo MCF (2002) Estimates of the mean per capita daily intake of benzoic and sorbic acids in Brazil. Food Addit Contam 19:647–654

    Article  CAS  Google Scholar 

  • Thandavan K, Gandhi S, Nesakumar N, Sethuraman S, Rayappan JBB, Krishnan UM (2015) Hydrogen peroxide biosensor utilizing a hybrid nano-interface of iron oxide nanoparticles and carbon nanotubes to assess the quality of milk. Sens Actu B Chem 215:166–173

    Article  CAS  Google Scholar 

  • Tripathy S, Reddy MS, Vanjari SRK, Jana S, Singh SG (2019) A step towards miniaturized milk adulteration detection system: smartphone-based accurate pH sensing using electrospunhalochromic nanofibers. Food Anal Methods 12(2):612–624

    Article  Google Scholar 

  • Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ (2009) Potentiometric biosensor for urea determination in milk. Sens Actua B 140:260–266

    Article  CAS  Google Scholar 

  • Tsutsumi T, Miyoshi N, Sasaki K, Maitani T (2008) Biosensor immunoassay for the screening of dioxin-like polychlorinated biphenyls in retail fish. Anal Chim Acta 617:177e183

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1999) Integrated Risk Information System (IRIS) on Formaldehyde; National Center for Environmental Assessment. Office of Research and Development, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vastarella W, Nicastri R (2005) Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensors. Talanta 66(3):627–633

    Article  CAS  Google Scholar 

  • Wang ZH, **a JF, Zhao FY, Han Q, Guo XM, Wang H, Ding MY (2013) Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection. Chin Chem Lett 24:243–245

    Article  CAS  Google Scholar 

  • Wang J, Yang B, Wang H, Yang P, Du Y (2015) Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Anal Chim Acta 893:41–48

    Article  CAS  Google Scholar 

  • Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, Liao X, Cheng L (2017) A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchim Acta 184:279–287

    Article  CAS  Google Scholar 

  • Wang WF, Qiang Y, Meng XH, Yang JL, Shi YP (2018) Ultrasensitive colorimetric assay melamine based on in situ reduction to formation of CQDs-silver nanocomposite. Sensors Actuators B Chem 260:808–815

    Article  CAS  Google Scholar 

  • Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23:51–57

    Article  CAS  Google Scholar 

  • Wooster GA, Martinez CM, Bowser PR (2005) Human health risks associated with formaldehyde treatments used in aquaculture: initial study. N Am J Aquac 67(2):111–113

    Article  Google Scholar 

  • World Health Organization. Environmental health criteria 89. Formaldehyde. 1989. http://www.inchem.org/documents/ehc/ehc/ehc89.htm. Accessed 27 Oct 2012

  • Xu S, Lu H (2015) One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Biosens Bioelectron 73:160–166

    Article  CAS  Google Scholar 

  • Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63(30):6707–6714

    Article  CAS  Google Scholar 

  • Yang Z, Si S, Dai H, Zhang C (2007) Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens Bioelectron 22(12):3283–3287

    Article  CAS  Google Scholar 

  • Yang L, Wang L, Li K, Ye B (2014) Sensitive voltammetric determination of neohesperidindihydrochalcone based on SWNTs modified glassy carbon electrode. Anal Methods 6:9410e9418

    Article  Google Scholar 

  • Yang X, Jia Z, Tan Z, Xu H, Luo N, Liao X (2016) Determination of melamine in infant formulas by fluorescence quenching based on the functionalized Au nanoclusters. Food Control 70:286–292

    Article  CAS  Google Scholar 

  • Yeh TS, Lin TC, Chen CC, Wen HM (2013) Analysis of free and bound formaldehyde in squid and squid products by gas chromatography-mass spectrometry. J Food Drug Anal:190–197

    Google Scholar 

  • Yiu PH, See J, Rajan A, Bong CJ (2008) Boric acid levels in fresh noodles and fish ball. https://doi.org/10.3844/ajabssp.2008.476.481

  • Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    Article  CAS  Google Scholar 

  • Yu X, He Y, Jiang J, Cui H (2014) A competitive immunoassay for sensitive detection of small molecules chloramphenicol based on luminol functionalized silver nanoprobe. Anal Chim Acta 812:236–242

    Article  CAS  Google Scholar 

  • Zhang L, Chen L (2018) Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta 185:135

    Article  CAS  Google Scholar 

  • Zhang L, Steinmaus C, Eastmond DA, **n XK, Smith MT (2008) Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res 681:150–168

    Article  CAS  Google Scholar 

  • Zhang Y, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19

    Article  CAS  Google Scholar 

  • Zhu H, Kannan K (2019) Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environ Int 130:104950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of Mohanlal Sukhadia University, Udaipur for supporting this work.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitish Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N.A., Rai, N., Marwal, A. (2021). Nanosensors for the Detection of Chemical Food Adulterants. In: Kumar, V., Guleria, P., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanotoxicology and Nanoecotoxicology Vol. 2 . Environmental Chemistry for a Sustainable World, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-69492-0_2

Download citation

Publish with us

Policies and ethics

Navigation