Latent Fingermarks and Electrochemistry: Possibilities for Development and Aging Studies

  • Chapter
  • First Online:
Technologies for Fingermark Age Estimations: A Step Forward

Abstract

The aim of this chapter is to comprehensively review the application of the principles of reduction-oxidation reactions, electrochemistry and electrochemical-based techniques to the visualization of latent fingermarks and to study their physical and chemical modifications over time.

After a brief introduction, the first part discusses redox reactions, which are at the basis of both well-established latent fingermarks detection techniques as well as innovative and very promising procedures that need yet to be fully explored for their application in casework. These redox reactions are typically exploited to in situ synthesise the enhancement reactant. Generally, this reactant selectively adheres to the print residue, leading to the positive development of the mark. Examples of these procedures include the physical developer (PD) and the processes based on colloidal gold, i.e. multimetal deposition (MMD) and its subsequently modified versions like MMD II and single-metal deposition (SMD and SMD II). The selective deposition of the reactant to the fingermark ridges can be then exploited by scanning electrochemistry microscopy (SECM) for imaging purposes. Another option for the enhancement reactant is to be directed towards the regions of the substrate free from the fingermark, thus enhancing the furrows rather than the ridges and leading to the so-called inverse development. Examples of this approach include electrodeposition and electrophoretic deposition. The ability of the fingermark residue to act as a mask towards an underlying metal substrate is also at the basis of differential corrosion approaches.

The sensitivity of electrochemical techniques in monitoring the physical changes that a fingermark undergoes over time will be highlighted in the second part of the chapter. Indeed, the possibility to concurrently monitor physical modifications and the variation in the chemical composition represents a highly desirable added value in order to reach trustworthy information of time since deposition.

Most techniques that record physical modifications of fingermarks over time are based on microscopy observations, thus significantly limiting the sensitivity of detectable changes and easily exposing the results to certain bias from the observer. However, electrochemical-based techniques possess the potential to overcome the limits inherent to microscopy observations and allows a deeper understanding of the complex mechanisms involved in the aging of fingermarks. The application of electrochemical impedance spectroscopy (EIS) and the use of an electric potential sensor (EPS) for imaging surface charges and monitoring their decay will be illustrated in this section.

Finally, concluding remarks will highlight the yet unexplored potentialities of electrochemistry to the discipline of latent fingermarks research, including both visualization and age determination possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PD:

Physical developer

MMD:

Multimetal deposition

SMD:

Single-metal deposition

SECM:

Scanning electrochemistry microscopy

EIS:

Electrochemical impedance spectroscopy

EPS:

Electric potential sensor

GSRs:

Gunshot residues

ELD:

Electrolytic deposition

EPD:

Electrophoretic deposition

CNLS:

Complex non-linear least squares

CPE:

Constant phase element

GC:

Glassy carbon

PTFE:

Polytetrafluoroethylene

References

  1. Bard AJ, Faulkner LR (2001) Electrochemical methods – fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  2. Yu HA, DeTata DA, Lewis SW, Silvester DS (2017) Recent developments in the electrochemical detection of explosives: towards field-deployable devices for forensic science. Trends Anal Chem 97:374–384

    Article  CAS  Google Scholar 

  3. Trejos T, Pyl CV, Menking-Hoggatt K, Alvarado AL, Arroyo LE (2018) Fast identification of inorganic and organic gunshot residues by LIBS and electrochemical methods. Forensic Chem 8:146–156

    Article  CAS  Google Scholar 

  4. Florea A, de Jong M, De Wael K (2018) Electrochemical strategies for the detection of forensic drugs. Curr Opin Electrochem 11:34–40

    Article  CAS  Google Scholar 

  5. Mendes LF, e Silva ARS, Bacil RP, Serrano SHP, Angnes L, Paixao TRLC, de Araujo WR (2019) Forensic electrochemistry: electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochim Acta 295:726–734

    Article  CAS  Google Scholar 

  6. de Oliveira LP, Rocha DP, de Araujo WR, Munoz RAA, Paixao TRLC, Salles MO (2018) Forensic in hand: new trends in forensic devices (2013–2017). Anal Methods 10:5135–5163

    Article  Google Scholar 

  7. Ferreira PC, Ataide VN, Chagas CLS, Angnes L, Coltro WKT, Paixao TRLC, de Araujo WR (2019) Wearable electrochemical sensors for forensic and clinical applications. Trends Anal Chem 119:115622

    Article  CAS  Google Scholar 

  8. Ramotowski RS (2013, Ch. 3) Metal deposition methods. In: Ramotowski RS (ed) Lee and Gaensslen’s advances in fingerprint technology, 3rd edn. CRC Press, Boca Raton, pp 55–81

    Google Scholar 

  9. Moenssen AA (1971) Fingerprint techniques. Chilton Book Company, Radnor. p. 120

    Google Scholar 

  10. Morris JR, Wells JM (1979) British Patent: 154014

    Google Scholar 

  11. Sodhi GS, Kaur J (2016) Physical developer method for detection of latent fingerprints: a review. Egypt J Forensic Sci 6:44–47

    Article  Google Scholar 

  12. Cantu A, Johnson J (2001) Silver physical development of latent prints. In: Advances in fingerprint technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  13. de la Hunty M, Moret S, Chadwick S, Lennard C, Spindler X, Roux C (2015) Understanding physical developer (PD): part I – is PD targeting lipids? Forensic Sci Int 257:481–487

    Article  PubMed  CAS  Google Scholar 

  14. de la Hunty M, Moret S, Chadwick S, Lennard C, Spindler X, Roux C (2015) Understanding physical developer (PD): part II – is PD targeting eccrine constituents? Forensic Sci Int 257:488–495

    Google Scholar 

  15. Mohamed AA (2011) Gold is going forensic. Gold Bull 44:71–77

    Article  Google Scholar 

  16. Saunders G (1989) Multimetal deposition technique for latent fingerprint development. Presented at the International Association for Identification, 74th Annual Education Conference, 1989, Pensacola, USA

    Google Scholar 

  17. Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U, Pinna N, Rademann K, Emmerling F, Kraehnert R, Polte J (2015) Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9:7052–7071

    Article  CAS  PubMed  Google Scholar 

  18. Becue A, Scoundrianos A, Moret S (2012) Detection of fingermarks by colloidal gold (MMD/SMD) – beyond the pH 3 limit. Forensic Sci Int 219:39–49

    Google Scholar 

  19. Schnetz B, Margot P (2001) Technical note: latent fingermarks, colloidal gold and multimetal deposition (MMD) – optimisation of the method. Forensic Sci Int 118:21–28

    Google Scholar 

  20. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labelling cytochemistry. Eur J Cell Biol 38:87–93

    CAS  PubMed  Google Scholar 

  21. Stauffer E, Becue A, Singh KV, Thampi KR, Champod C, Margot P (2007) Single-metal deposition (SMD) as a latent fingermark enhancement technique: an alternative to multimetal deposition (MMD). Forensic Sci Int 168:e5–e9

    Article  CAS  PubMed  Google Scholar 

  22. Durussel P, Stauffer E, Becue A, Champod C, Margot P (2009) Single-metal deposition: optimization of this fingermark enhancement technique. J Forensic Identif 59:80–96

    Google Scholar 

  23. Moret S, Becue A (2015) Single-metal deposition for fingermark detection – a simpler and more efficient protocol. J Forensic Identif 65:118–137

    Google Scholar 

  24. Newland TG, Moret S, Becue A, Lewis SW (2016) Further investigations into the single metal deposition (SMD II) technique for the detection of latent fingermarks. Forensic Sci Int 268:62–72

    Article  CAS  PubMed  Google Scholar 

  25. Moret S, Lee PLT, de la Hunty M, Spindler X, Lennard C, Roux C (2019) Single metal deposition versus physical developer: a comparison between two advanced fingermark detection techniques. Forensic Sci Int 294:103–112

    Article  CAS  PubMed  Google Scholar 

  26. Zhang M, Girault HH (2007) Fingerprint imaging by scanning electrochemical microscopy. Electrochem Commun 9:1778–1782

    Article  CAS  Google Scholar 

  27. Zhang M, Becue A, Prudent M, Champod C, Girault HH (2007) SECM imaging of MMD-enhanced latent fingermarks. Chem Commun 38:3948–3950

    Article  CAS  Google Scholar 

  28. Zhang M, Girault HH (2009) SECM for imaging and detection of latent fingerprints. Analyst 134:25–30

    Article  CAS  PubMed  Google Scholar 

  29. Bond JW (2008) Visualization of latent fingerprint corrosion of metallic surfaces. J Forensic Sci 53:812–822

    Article  CAS  PubMed  Google Scholar 

  30. Bond JW (2009) Visualization of latent fingerprint corrosion of brass. J Forensic Sci 54:1034–1041

    Article  CAS  PubMed  Google Scholar 

  31. Wightman G, O’Connor D (2011) The thermal visualization of latent fingermarks on metallic surfaces. Forensic Sci Int 204:88–96

    Article  CAS  PubMed  Google Scholar 

  32. Bond JW (2011) Optical enhancement of fingerprint deposits on brass using digital colour map**. J Forensic Sci 56:1285–1288

    Article  PubMed  Google Scholar 

  33. Wightman G, Emery F, Austin C, Andersson I, Harcus L, Arju G, Steven C (2015) The interaction of fingermark deposits on metal surfaces and potential ways for visualization. Forensic Sci Int 249:241–254

    Article  CAS  PubMed  Google Scholar 

  34. Song DF, Sommerville D, Brown AG, Shimmon RG, Reedy BJ, Tahtouh M (2011) Thermal development of latent fingermarks on porous surfaces – further observations and refinements. Forensic Sci Int 204:97–110

    Google Scholar 

  35. Rosa R, Veronesi P, Leonelli C (2013) Microwave selective thermal development of latent fingerprints on porous surfaces: potentialities of the method and preliminary experimental results. J Forensic Sci 58:1314–1321

    Article  PubMed  Google Scholar 

  36. Choi MJ, McDonagh AM, Maynard P, Roux C (2008) Metal containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci Int 179:87–97

    Article  CAS  PubMed  Google Scholar 

  37. Dilag J, Kobus HJ, Ellis AV (2011) Nanotechnology as a new tool for fingermark detection: a review. Curr Nanosci 7:153–159

    Article  CAS  Google Scholar 

  38. Hazarika P, Russell DA (2012) Advances in fingerprint analysis. Angew Chem Int Ed 51:3524–3531

    Article  CAS  Google Scholar 

  39. Becue A, Cantu AA (2013) Fingermark detection using nanoparticles. In: Ramotowsky RS (ed) Lee and Gaensslen’s advances in fingerprint technology, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 307–379

    Google Scholar 

  40. Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C (2011) Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun 47:5602–5604

    Article  CAS  Google Scholar 

  41. Wood M, Maynard P, Spindler X, Lennard C, Roux C (2012) Visualization of latent fingermarks using an aptamer-based reagent. Angew Chem Int Ed 51:12272–12274

    Article  CAS  Google Scholar 

  42. He Y, Xu L, Zhu Y, Wei Q, Zhang M, Su B (2014) Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew Chem Int Ed 53:12609–12612

    CAS  Google Scholar 

  43. Moret S, Spindler X, Lennard C, Roux C (2015) Microscopic examination of fingermark residues: opportunities for fundamentals studies. Forensic Sci Int 255:28–37

    Article  CAS  PubMed  Google Scholar 

  44. Jaber N, Lesniewski A, Gabizon H, Shenawi S, Mandler D, Almog J (2012) Visualization of latent fingermarks by nanotechnology: reversed development on paper – a remedy to the variation in sweat composition. Angew Chem Int Ed 51:12224–12227

    Google Scholar 

  45. Qin G, Zhang M, Zhang Y, Zhu Y, Liu S, Wu W, Zhang X (2013) Visualizing latent fingerprints by electrodeposition of metal nanoparticles. J Electroanal Chem 693:122–126

    Article  CAS  Google Scholar 

  46. Qin G, Zhang M, Zhang Y, Zhu Y, Liu S, Wu W, Zhang X (2013) Visualization of latent fingerprints using Prussian blue thin films. Chin Chem Lett 24:173–176

    Article  CAS  Google Scholar 

  47. Bersellini C, Garofano L, Giannetto M, Lusardi F, Mori G (2001) Development of latent fingerprints on metallic surfaces using electropolymerization processes. J Forensic Sci 46:871–877

    Article  CAS  PubMed  Google Scholar 

  48. Beresford AL, Hillman AR (2010) Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal Chem 82:483–486

    Article  CAS  PubMed  Google Scholar 

  49. Brown RM, Hillman AR (2012) Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene). Phys Chem Chem Phys 14:8653–8661

    Article  CAS  PubMed  Google Scholar 

  50. Sapstead RM, Ryder KS, Fullarton C, Skoda M, Dalgliesh RM, Watkins EB, Beebee C, Barker R, Glidle A, Hillman AR (2013) Nanoscale control of interfacial processes for latent fingerprint enhancement. Faraday Discuss 164:391–410

    Article  CAS  PubMed  Google Scholar 

  51. Rosa R, Cannio M, Veronesi P, Leonelli C (2013) Electrophoretic deposition of nanoparticles and nano-structured particles for latent fingerprints detection on different surfaces. Proceedings of the 65th Annual Scientific Meeting of the American Academy of Forensic Sciences, February 18–23, 2013, Washington, DC, USA, vol 19, pp 30–31

    Google Scholar 

  52. Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367

    Article  CAS  Google Scholar 

  53. Zetasizer Nano User Manual, MAN0317, issue 4.0, Malvern Instruments, Worcestershire, UK, May 2008

    Google Scholar 

  54. Rosa R, Veronesi P, Leonelli C (2014) Strengthening research methodology for new latent fingerprints development techniques by means of design of experiments (DoE). Proceedings of the 66th Annual Scientific Meeting of the American Academy of Forensic Sciences, Seattle, WA, USA, February 17–22, 2014, vol 20, pp 87–88

    Google Scholar 

  55. Girod A, Ramotowski R, Weyermann C (2012) Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int 223:10–24

    Article  CAS  PubMed  Google Scholar 

  56. Sears VG, Bleay SM, Bandey HL, Bowman VJ (2012) A methodology for finger mark research. Sci Justice 52:145–160

    Article  CAS  PubMed  Google Scholar 

  57. van Asten AC (2014) On the added value of forensic science and grand innovation challenges for the forensic community. Sci Justice 54:170–179

    Article  PubMed  Google Scholar 

  58. Archer NE, Charles Y, Elliot JA, Jickells S (2005) Changes in the lipid composition of latent fingerprint residues with time after deposition on a surface. Forensic Sci Int 154:224–239

    Article  CAS  PubMed  Google Scholar 

  59. Weyermann C, Roux C, Champod C (2011) Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci 56:102–108

    Article  CAS  PubMed  Google Scholar 

  60. Croxton RS, Baron MG, Butler D, Kent T, Sears VG (2006) Development of a GC-MS method for the simultaneous analysis of latent fingerprint components. J Forensic Sci 51:1329–1333

    Article  CAS  PubMed  Google Scholar 

  61. Croxton RS, Baron MG, Butler D, Kent T, Sears VG (2010) Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int 199:93–102

    Article  CAS  PubMed  Google Scholar 

  62. Girod A, Pyratou A, Holmes D, Weyermann C (2016) Aging of target lipid parameters in fingermark residue using GC/MS: effects of influence factors and perspectives for dating purposes. Sci Justice 56:165–180

    Article  PubMed  Google Scholar 

  63. Girod A, **ao L, Reedy B, Roux C, Weyermann C (2015) Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR). Forensic Sci Int 254:185–196

    CAS  PubMed  Google Scholar 

  64. Barros RM, Faria BEF, Kuckelhaus SAS (2013) Morphometry of latent palmprints as a function of time. Sci Justice 53:402–408

    Article  PubMed  Google Scholar 

  65. Popa G, Potorac R, Preda N (2010) Method for fingerprint age determination. Rom J Legal Med 2:149–154

    Article  Google Scholar 

  66. Merkel R, Gruhn S, Dittmann J, Vielhauer C, Brautigam A (2012) On non-invasive 2D and 3D chromatic white light image sensors for age determination of latent fingerprints. Forensic Sci Int 222:52–70

    Article  PubMed  Google Scholar 

  67. De Alcaraz-Fossoul J, Patris CM, Muntaner AB, Feixat CB, Badia MG (2013) Determination of latent fingerprint degradation patterns – a real fieldwork study. Int J Legal Med 127:857–870

    Google Scholar 

  68. De Alcaraz-Fossoul J, Patris CM, Feixat CB, McGarr L, Brandelli D, Stow K, Badia MG (2016) Latent fingermark aging patterns (part I): minutiae count as one indicator of degradation. J Forensic Sci 61:322–333

    Article  PubMed  CAS  Google Scholar 

  69. De Alcaraz-Fossoul J, Feixat CB, Tasker J, McGarr L, Stow K, Carreras-Marin C, Oset JT, Badia MG (2016) Latent fingermark aging patterns (part II): color contrast between ridges and furrows as one indicator of degradation. J Forensic Sci 61:947–958

    Article  PubMed  CAS  Google Scholar 

  70. De Alcaraz-Fossoul J, Feixat CB, Carreras-Marin C, Tasker J, Zapico SC, Badia MG (2017) Latent fingermark aging patterns (part III): discontinuity index as one indicator of degradation. J Forensic Sci 62:1180–1187

    Article  PubMed  CAS  Google Scholar 

  71. De Alcaraz-Fossoul J, Feixat CB, Zapico SC, McGarr L, Carreras-Marin C, Tasker J, Badia MG (2019) Latent fingermark aging patterns (part IV): ridge width as one indicator of degradation. J Forensic Sci 64:1057–1066

    Article  PubMed  CAS  Google Scholar 

  72. De Alcaraz-Fossoul J, Mancenido M, Soignard E, Silverman N (2019) Application of 3D imaging technology to latent fingermark aging studies. J Forensic Sci 64:570–576

    Article  PubMed  Google Scholar 

  73. Bremmer RH, Nadort A, van Leeuwen TG, van Gemert MJC, Aalders MCG (2011) Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Sci Int 206:166–171

    Article  CAS  PubMed  Google Scholar 

  74. Li B, Beveridge P, O’Hare WT, Islam M (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53:270–277

    Article  CAS  PubMed  Google Scholar 

  75. van Dam A, Schwarz JCV, de Vos J, Siebes M, Sijen T, van Leeuwen TG, Aalders MCG, Lambrechts SAG (2014) Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angew Chem Int Ed 53:6272–6275

    Article  CAS  Google Scholar 

  76. Lambrechts SAG, van Dam A, de Vos J, van Weert A, Sijen T, Aalders MCG (2012) On the autofluorescence of fingermarks. Forensic Sci Int 222:89–93

    Article  CAS  PubMed  Google Scholar 

  77. Rosa R, Giovanardi R, Bozza A, Veronesi P, Leonelli C (2017) Electrochemical impedance spectroscopy: a deeper and quantitative insight into the fingermarks physical modifications over time. Forensic Sci Int 273:144–152

    Article  CAS  PubMed  Google Scholar 

  78. De Alcaraz-Fossoul J, Roberts KA, Feixat CB, Hogrebe GG, Badia MG (2016) Fingermark ridge drift. Forensic Sci Int 258:26–31

    Article  PubMed  Google Scholar 

  79. Botelho EC, Scherbakoff N, Rezende MC (2001) Porosity control in glassy carbon by rheological study of the furfuryl resin. Carbon 39:45–52

    Article  Google Scholar 

  80. Fuhrmann J (1978) Contact electrification of dielectric solids. J Electrost 4:109–118

    Article  Google Scholar 

  81. Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62:277–290

    Article  CAS  Google Scholar 

  82. Lowell J, Akande AR (1988) Contact electrification-why is it variable? J Phys D Appl Phys 21:125–137

    Article  CAS  Google Scholar 

  83. Beardsmore-Rust ST, Watson P, Prance RJ, Harland CJ, Prance H (2009) Imaging of charge spatial density on insulating materials. Meas Sci Technol 20:095711. (6 pp)

    Article  CAS  Google Scholar 

  84. Watson P, Prance RJ, Beardsmore-Rust ST, Prance H (2011) Imaging electrostatic fingerprints with implications for a forensic timeline. Forensic Sci Int 209:e41–e45

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosa, R., Mugoni, C., Bononi, M., Giovanardi, R. (2021). Latent Fingermarks and Electrochemistry: Possibilities for Development and Aging Studies. In: De Alcaraz-Fossoul, J. (eds) Technologies for Fingermark Age Estimations: A Step Forward. Springer, Cham. https://doi.org/10.1007/978-3-030-69337-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69337-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69336-7

  • Online ISBN: 978-3-030-69337-4

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics

Navigation