A Note on Representation Variety of Abelian Groups and Reidemeister Torsion

  • Conference paper
  • First Online:
Functional Analysis in Interdisciplinary Applications—II (ICAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 351))

Included in the following conference series:

  • 378 Accesses

Abstract

Let S and G denote respectively the \(2-\)torus and one of the Lie groups \(\mathrm {GL}(n,\mathbb {C}),\) \(\mathrm {SL}(n,\mathbb {C}),\) \(\mathrm {SO}(n,\mathbb {C}),\) \(\mathrm {Sp}(2n,\mathbb {C}).\) In the present article, we consider the smooth part of the representation variety \( \mathrm {Rep}(S,G) \) consisting of conjugacy classes of homomorphisms from fundamental group \(\pi _1(S)\) to G. We show the well definiteness of Reidemeister torsion for such representations. In addition, we establish a formula for computing the Reidemeister torsion of such representations in terms of the symplectic structure on \(\text {Rep}\left( S ,G\right) \) [51]. This symplectic form is analogous to Atiyah–Bott–Goldman symplectic form of higher genera for the Lie group G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldman, W.M.: Representations of fundamental groups of surfaces. In: Geometry and Topology. Lecture Notes in Mathematics, vol. 1167, pp. 95–117. Springer, Berlin (1985)

    Google Scholar 

  2. Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: The Geometry of Group Representations. American Mathematical Society Contemporary Mathematics, pp. 169–198 (1988) 3. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Boston (1992) 4. Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura. Appl. 169, 321–354 (1995)

    Google Scholar 

  3. Choi, S., Goldman, W.M.: Convex real projective structures on closed surfaces are closed. Proc. Am. Math. Soc. 118(2), 657–661 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guichard, O., Wienhard, A.: Topological invariants of Anosov representations. J. Topol. 3(3), 578–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hitchin, N.: Lie groups and Teichmuller spaces. Topology 31(3), 449–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Labourie, F.: Anasov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Porti, J.: Torsion de Reidemeister pour les Varietes Hyperboliques. Mem. Am. Math. Soc. 128(612), 139 (1997)

    Google Scholar 

  8. Heusener, M., Porti, J.: The variety of characters in PSL2(C). Bol. Soc. Mat. Mex. 10(3), 221–237 (2004)

    MATH  Google Scholar 

  9. Heusener, M., Porti, J.: Deformations of reducible representations of 3-manifold groups into PSL(2, C). Alg. Geom. Top 5, 965–997 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Motegi, K.: Haken manifolds and representations of their fundamental groups in SL(2, C). Topol. Appl. 29(3), 207–212 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118, 47–84 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shalen, P.: Representations of 3-manifold groups. In: Daverman, R., Sher, R. (eds.) Handbook of Geometric Topology, pp. 955–1044. North-Holland, Amsterdam (2002)

    Google Scholar 

  13. Boileau, M., Boyer, S.: On character varieties, sets of discrete characters, and nonzero degree maps. Am. J. Math. 134(2), 285–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boden, H., Herald, C.: The SU(3) Casson invariant for integral homology 3-spheres. J. Differ. Geom. 50, 147–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boden, H.U., Curtis, C.L.: Splicing and the SL2(C) Casson invariant. Proc. Am. Math. Soc. 136(7), 2615–2623 (2008)

    Article  MATH  Google Scholar 

  16. Curtis, C.L.: An intersection theory count of the SL2(C)-representations of the fundamental group of a 3-manifold. Topology 40, 773–787 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boden, H.U., Friedl, S.: Metabelian SL(n, C) representations of knot groups. Pacific J. Math. 238(1), 7–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cooper, D., Long, D.: Representation theory and the A-polynomial of a knot. Chaos Solitons Fractals 9, 749–763 (1998)

    Google Scholar 

  19. Gelca, R.: On the relation between the A-polynomial and the Jones polynomial. Proc. Am. Math. Soc. 130(4), 1235–1241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le, T.Q.: The colored Jones polynomial and the A-polynomial of knots. Adv. Math. 207(2), 782–804 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gukov, S.: Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirk, P., Klassen, E.: Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of T2. Commun. Math. Phys. 153(3), 521–557 (1993)

    Article  MATH  Google Scholar 

  23. Weitsman, J.: Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus 1. Commun. Math. Phys. 137, 175–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141, 153–209 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bullock, D.: Rings of SL2(C)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72, 521–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352, 4877–4888 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Przytycki, J.H., Sikora, A.S.: On Skein algebras and Sl2(C)-character varieties. Topology 39(1), 115–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sikora, A.S.: Skein theory for SU(n)-quantum invariants. Algebr. Geom. Topol. 5, 865–897 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Atiyah, M., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. London Ser. A. 308, 523–615 (1983)

    Google Scholar 

  31. Alekseev, A., Meinrenken, E., Woodward, C.: Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces. Geom. Funct. Anal. 12(1), 1–31 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Florentino, C., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. 345(2), 453–489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Garcia-Prada, O., Gothen, P.B., Mundet i Riera, I.: Higgs bundles and surface group representations in the real symplectic group. J. Topol. 6, 64–118 (2013)

    Google Scholar 

  34. Hausel, T., Thaddeus, M.: Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles. J. Am. Math. Soc. 16(2), 303–327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jeffrey, L.C.: Flat connections on oriented 2-manifolds. Bull. Lond. Math. Soc. 37, 1–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meinrenken, E.: Witten’s formulas for intersection pairings on moduli spaces of flat G-bundles. Adv. Math. 197, 140–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. Inst. Hautes Etud. Sci. 79, 47–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety II. Publ. Math. Inst. Hautes Etud. Sci. 80, 5–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reidemeister, K.: Homotopieringe und linsenraume. Abh. Math. Semin. Univ. Hambg. 11, 102–109 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  41. Franz, W.: Uber die Torsion einer Uberdeckung. J. Reine Angew. Math. 173, 245–254 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  42. Milnor, J.: Two complexes which are homeomorphic but combinatorially distinct. Ann. Math. 74(3), 575–590 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  43. Milnor, J.: A duality theorem for Reidemeister torsion. Ann. Math. 76(1), 137–147 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. 109(2), 259–321 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Muller, W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28(3), 233–305 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Milnor, J.: Whitehead torsion. Bull. Am. Math. Soc. 72, 358–426 (1966)

    Google Scholar 

  47. Hutchings, M., Lee, Y.: Circle valued Morse theory and Reidemeister torsion. Geom. Topol. 3, 369–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Meng, G., Taubes, C.H.: SW \(=\) Milnor torsion. Math. Res. Lett. 3(5), 661–674 (1996)

    Google Scholar 

  49. Schwarz, A.: The partition function of degenerate quadratic functional and Ray-Singer torsion. Lett. Math. Phys. 2(3), 247–252 (1978)

    Article  MATH  Google Scholar 

  50. Turaev, V.: Torsions of 3-Dimensional Manifolds. Progress in Mathematics, Birkhauser, Basel (2002)

    Google Scholar 

  51. Sikora, A.S.: Character varieties of abelian groups. Math. Z. 277, 241–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sozen, Y.: On Reidemeister torsion of a symplectic complex. Osaka J. Math. 45(1), 1–39 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Sozen, Y.: Symplectic chain complex and Reidemeister torsion of compact manifolds. Math. Scand. 111(1), 65–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sozen, Y.: A note on Reidemeister torsion and pleated surfaces. J. Knot Theory Ramif. 23(3), 1–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hezenci, F., Sozen, Y.: A note on exceptional groups and Reidemeister torsion. J. Math. Phys. 59, 081704 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Humphreys, J.E.: Introduction to Lie algebras and representation theory. In: Graduate Texts in Mathematics, vol. 9. Springer, New York, Berlin (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Hezenci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hezenci, F., Sozen, Y. (2021). A Note on Representation Variety of Abelian Groups and Reidemeister Torsion. In: Ashyralyev, A., Kalmenov, T.S., Ruzhansky, M.V., Sadybekov, M.A., Suragan, D. (eds) Functional Analysis in Interdisciplinary Applications—II. ICAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 351. Springer, Cham. https://doi.org/10.1007/978-3-030-69292-6_13

Download citation

Publish with us

Policies and ethics

Navigation