Modelling Dynamically Structured Fluidisation

  • Chapter
  • First Online:
Dynamically Structured Flow in Pulsed Fluidised Beds

Part of the book series: Springer Theses ((Springer Theses))

  • 159 Accesses

Abstract

In this chapter, the structured flow is simulated using both a Lagrangian and Eulerian approach for the solid phase. The discrete model presents a flow pattern of bubbles in quantitative agreement with experimentally witnessed flows. The distinctive features, such as shifting nucleation sites of bubbles and interphase coupling, are shown induced by the sharp changes of solid stress, which are created by alternating granules between fluid-like and solid-like states. These numerical results, thus, reveal the essential role of solid friction in reproducing and stabilising the structured flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  2. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

    Article  CAS  Google Scholar 

  3. Boemer A, Qi H, Renz U (1997) Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. Int J Multiphase Flow 23(5):927–944

    Article  CAS  Google Scholar 

  4. Bokkers G, van Sint Annaland M, Kuipers JAM (2004) Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol 140(3):176–186

    Article  CAS  Google Scholar 

  5. Boyce CM, Rice NP, Ozel A, Davidson JF, Sederman AJ, Gladden LF, Sundaresan S, Dennis JS, Holland DJ (2016) Magnetic resonance characterization of coupled gas and particle dynamics in a bubbling fluidized bed. Phys Rev Fluids 1(7):074201

    Article  Google Scholar 

  6. Che Y, Tian Z, Liu Z, Zhang R, Gao Y, Zou E, Wang S, Liu B (2015) CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process. Powder Technol 278:94–110

    Article  CAS  Google Scholar 

  7. Chialvo S, Sun J, Sundaresan S (2012) Bridging the rheology of granular flows in three regimes. Phys Rev E 85(2):021305

    Article  CAS  Google Scholar 

  8. Chialvo S, Sundaresan S (2013) A modified kinetic theory for frictional granular flows in dense and dilute regimes. Phys Fluids 25(7):070603

    Google Scholar 

  9. Coppens M-O, Regelink MA, van den Bleek CM (2002) Pulsation induced transition from chaos to periodically ordered patterns in fluidised beds. In: Proceedings of 4th World Congress on Particle Technology (WCPT), Sydney, pp 1–8

    Google Scholar 

  10. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J 11(2):215–234

    Article  Google Scholar 

  11. Cross M, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, Cambridge

    Google Scholar 

  12. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  13. Deen NG, van Sint Annaland M, van der Hoef MA, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1–2):28–44

    Google Scholar 

  14. Enwald H, Peirano E, Almstedt AE (1996) Eulerian two-phase flow theory applied to fluidization. Int J Multiphase Flow 22:21–66

    Article  CAS  Google Scholar 

  15. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  16. Farzaneh M, Almstedt A-E, Johnsson F, Pallarès D, Sasic S (2015) The crucial role of frictional stress models for simulation of bubbling fluidized beds. Powder Technol 270:68–82

    Article  CAS  Google Scholar 

  17. Foerster SF, Louge MY, Chang H, Allia K (1994) Measurements of the collision properties of small spheres. Phys Fluids 6(3):1108–1115

    Article  CAS  Google Scholar 

  18. Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press, New York

    Google Scholar 

  19. Gidaspow D, Bezburuah R, Ding J (1991) Hydrodynamics of circulating fluidized beds: kinetic theory approach. In: Proceedings of 7th Engineering Foundation Conference on Fluidization, Brisbane, pp 75–82

    Google Scholar 

  20. Goldschmidt M, Beetstra R, Kuipers JAM (2002) Hydrodynamic modelling of dense gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations. Chem Eng Sci 57(11):2059–2075

    Article  CAS  Google Scholar 

  21. Goniva C, Kloss C, Deen NG, Kuipers JAM, Pirker S (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10(5):582–591

    Article  Google Scholar 

  22. Grace J, Taghipour F (2004) Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol 139(2):99–110

    Article  CAS  Google Scholar 

  23. Hernández-Jiménez F, Sánchez-Delgado S, Gómez-García A, Acosta-Iborra A (2011) Comparison between two-fluid model simulations and particle image analysis & velocimetry (PIV) results for a two-dimensional gas–solid fluidized bed. Chem Eng Sci 66(17):3753–3772

    Article  CAS  Google Scholar 

  24. Jackson R (2000) The dynamics of fluidized particles. Cambridge University Press, Cambridge

    Google Scholar 

  25. Jenkins JT, Zhang C (2002) Kinetic theory for identical, frictional, nearly elastic spheres. Phys Fluids 14(3):1228–1235

    Article  CAS  Google Scholar 

  26. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  CAS  Google Scholar 

  27. Kawaguchi T, Miyoshi A, Tanaka T, Tsuji Y (2001) Discrete particle analysis of 2D pulsating fluidized bed. In: Proceedings of 4th International Conference on Multiphase Flow, New Orleans, #838

    Google Scholar 

  28. Kuipers JAM, van Duin KJ, van Beckum FPH, van Swaaij WPM (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47(8):1913–1924

    Google Scholar 

  29. Kunii D, Levenspiel O (2013) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  30. Lindborg H, Lysberg M, Jakobsen HA (2007) Practical validation of the two-fluid model applied to dense gas–solid flows in fluidized beds. Chem Eng Sci 62(21):5854–5869

    Article  CAS  Google Scholar 

  31. Lu L, Xu J, Ge W, Yue Y, Liu X, Li J (2014) EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chem Eng Sci 120:67–87

    Article  CAS  Google Scholar 

  32. Lun C, Savage SB, Jeffrey D, Chepurniy N (1984) Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140:223–256

    Article  Google Scholar 

  33. Makkawi YT, Wright PC (2002) Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography. Chem Eng Sci 57(13):2411–2437

    Article  CAS  Google Scholar 

  34. Makkawi YT, Wright PC (2004) Electrical capacitance tomography for conventional fluidized bed measurements—remarks on the measuring technique. Powder Technol 148(2–3):142–157

    Article  CAS  Google Scholar 

  35. Mazzei L, Lettieri P (2007) A drag force closure for uniformly dispersed fluidized suspensions. Chem Eng Sci 62(22):6129–6142

    Article  CAS  Google Scholar 

  36. Mikami T, Kamiya H, Horio M (1998) Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci 53(10):1927–1940

    Article  CAS  Google Scholar 

  37. Müller C, Holland D, Sederman A, Scott S, Dennis J, Gladden L (2008) Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technol 184(2):241–253

    Article  CAS  Google Scholar 

  38. Pannala S, Syamlal M, O’Brien TJ (2011) Computational gas-solids flows and reacting systems: theory, methods and practice. IGI Global, Hershey

    Google Scholar 

  39. Passalacqua A, Marmo L (2009) A critical comparison of frictional stress models applied to the simulation of bubbling fluidized beds. Chem Eng Sci 64(12):2795–2806

    Article  CAS  Google Scholar 

  40. Penn A, Boyce CM, Kovar T, Tsuji T, Pruessmann KP, Müller CR (2018) Real-time magnetic resonance imaging of bubble behavior and particle velocity in fluidized beds. Ind Eng Chem Res 57(29):9674–9682

    Article  CAS  Google Scholar 

  41. Regelink MA (2000) Formation of regular bubble patterns in periodically pulsed gas-solid fluidized beds. MSc thesis, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  42. Saayman J, Nicol W, van Ommen JR, Mudde RF (2013) Fast X-ray tomography for the quantification of the bubbling-, turbulent- and fast fluidization-flow regimes and void structures. Chem Eng J 234:437–447

    Article  CAS  Google Scholar 

  43. Sakai M, Koshizuka S (2009) Large-scale discrete element modeling in pneumatic conveying. Chem Eng Sci 64(3):533–539

    Article  CAS  Google Scholar 

  44. Schaeffer DG (1987) Instability in the evolution equations describing incompressible granular flow. J Differ Equ 66(1):19–50

    Article  Google Scholar 

  45. Silbert LE, Ertas D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys Rev E 64(5):051302

    Article  CAS  Google Scholar 

  46. Sines JN, Hwang S, Marashdeh QM, Tong A, Wang D, He P, Straiton BJ, Zuccarelli CE, Fan L-S (2019) Slurry bubble column measurements using advanced electrical capacitance volume tomography sensors. Powder Technol 355:474–480

    Article  CAS  Google Scholar 

  47. Snider D (2001) An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys 170(2):523–549

    Article  CAS  Google Scholar 

  48. Sun J, Sundaresan S (2011) A constitutive model with microstructure evolution for flow of rate-independent granular materials. J Fluid Mech 682:590–616

    Article  Google Scholar 

  49. Sundaresan S (2003) Instabilities in fluidized beds. Annu Rev Fluid Mech 35(1):63–88

    Article  Google Scholar 

  50. Syamlal M, Rogers W, O’Brien TJ (1993) MFIX documentation: theory guide. Technical Note DOE/METC-95/1013 and NTIS/DE95000031. National Energy Technology Laboratory, Department of Energy

    Google Scholar 

  51. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250

    Article  CAS  Google Scholar 

  52. Tsuo YP, Gidaspow D (1990) Computation of flow patterns in circulating fluidized beds. AlChE J 36(6):885–896

    Article  CAS  Google Scholar 

  53. van der Hoef M, van Sint Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40:47–70

    Article  Google Scholar 

  54. van der Hoef M, Ye M, van Sint Annaland M, Andrews A, Sundaresan S, Kuipers JAM (2006) Multiscale modeling of gas-fluidized beds. Adv Chem Eng 31:65–149

    Article  CAS  Google Scholar 

  55. van Wachem B, Schouten JC, van den Bleek CM, Krishna R, Sinclair J (2001) Comparative analysis of CFD models of dense gas–solid systems. AlChE J 47(5):1035–1051

    Article  Google Scholar 

  56. Verma V, Deen NG, Padding JT, Kuipers JAM (2013) Two-fluid modeling of three-dimensional cylindrical gas–solid fluidized beds using the kinetic theory of granular flow. Chem Eng Sci 102:227–245

    Article  CAS  Google Scholar 

  57. Verma V, Padding JT, Deen NG, Kuipers JAM, Barthel F, Bieberle M, Wagner M, Hampel U (2014) Bubble dynamics in a 3-D gas-solid fluidized bed using ultrafast electron beam X-ray tomography and two-fluid model. AlChE J 60(5):1632–1644

    Article  CAS  Google Scholar 

  58. Wang X, Rhodes M (2005) Pulsed fluidization—a DEM study of a fascinating phenomenon. Powder Technol 159(3):142–149

    Article  CAS  Google Scholar 

  59. Wen C, Yu Y (2013) Mechanics of fluidization. Chem Eng Prog Symp Ser 62:100

    Google Scholar 

  60. Wu K, de Martín L, Coppens M-O (2017) Pattern formation in pulsed gas-solid fluidized beds—the role of granular solid mechanics. Chem Eng J 329:4–14

    Article  CAS  Google Scholar 

  61. Wu K, de Martín L, Mazzei L, Coppens M-O (2016) Pattern formation in fluidized beds as a tool for model validation: a two-fluid model based study. Powder Technol 295:35–42

    Article  CAS  Google Scholar 

  62. Yang L, Padding JT, Kuipers JAM (2016) Modification of kinetic theory of granular flow for frictional spheres, part I: two-fluid model derivation and numerical implementation. Chem Eng Sci 152:767–782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiqiao Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, K. (2021). Modelling Dynamically Structured Fluidisation. In: Dynamically Structured Flow in Pulsed Fluidised Beds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-68752-6_4

Download citation

Publish with us

Policies and ethics

Navigation